Threads, processes, and context switching

Required reading: proc.c (focus on scheduler() and sched()), setjmp.S, and sys_fork (in
Sysproc.c)

Overview

Big picture: more programs than processors. How to share the limited number of
processors among the programs?

Observation: most programs don't need the processor continuously, because they
frequently have to wait for input (from user, disk, network, etc.)

Idea: when one program must wait, it releases the processor, and gives it to another
program.

Mechanism: thread of computation, an active active computation. A thread is an
abstraction that contains the minimal state that is necessary to stop an active and an
resume it at some point later. What that state is depends on the processor. On x86, it is
the processor registers (see setjmp.S).

Address spaces and threads: address spaces and threads are in principle independent
concepts. One can switch from one thread to another thread in the same address space, or
one can switch from one thread to another thread in another address space. Example: in
XV6, one switches address spaces by switching segmentation registers (see setupsegs).
Does xv6 ever switch from one thread to another in the same address space? (Answer:
yes, v6 switches, for example, from the scheduler, proc[0], to the kernel part of init,
proc[1].) In the JOS kernel we switch from the kernel thread to a user thread, but we don't
switch kernel space necessarily.

Process: one address space plus one or more threads of computation. In xv6 all user
programs contain one thread of computation and one address space, and the concepts of
address space and threads of computation are not separated but bundled together in the
concept of a process. When switching from the kernel program (which has multiple
threads) to a user program, xv6 switches threads (switching from a kernel stack to a user
stack) and address spaces (the hardware uses the kernel segment registers and the user
segment registers).

Xv6 supports the following operations on processes:

o fork; create a new process, which is a copy of the parent.
e EXeC; execute a program

e exit: terminte process

e wait: wait for a process to terminate

o Kkill: kill process

o shrk: grow the address space of a process.

This interfaces doesn't separate threads and address spaces. For example, with this
interface one cannot create additional threads in the same threads. Modern Unixes
provides additional primitives (called pthreads, POSIX threads) to create additional
threads in a process and coordinate their activities.

Scheduling. The thread manager needs a method for deciding which thread to run if
multiple threads are runnable. The xv6 policy is to run the processes round robin. Why
round robin? What other methods can you imagine?

Preemptive scheduling. To force a thread to release the processor periodically (in case the
thread never calls sleep), a thread manager can use preemptive scheduling. The thread
manager uses the clock chip to generate periodically a hardware interrupt, which will
cause control to transfer to the thread manager, which then can decide to run another
thread (e.g., see trap.c).

XVv6 code examples

Thread switching is implemented in xv6 using setjmp and longjmp, which take a jumpbuf
as an argument. setjmp saves its context in a jumpbuf for later use by longjmp. longjmp
restores the context saved by the last setjmp. It then causes execution to continue as if the
call of setjmp has just returned 1.

e setjmp saves: ebx, exc, edx, esi, edi, esp, ebp, and eip.
o longjmp restores them, and puts 1 in eax!

Example of thread switching: proc[0] switches to scheduler:

1359: proc|0] calls iget, which calls sleep, which calls sched.

e 2261: The stack before the call to setjmp in sched is:
. CPU O:

o eax: 0x10al44 1089860

. ecx: 0x6c65746e 1818588270
° edx: 0xO0 0

. ebx: 0x10a0e0 1089760

. esp: 0x210ea8 2166440

o ebp: 0x210ebc 2166460

o esi: 0x107f20 1081120

o edi: 0x107740 1079104

. eip: 0x1023c9

. eflags 0x12

. cs: 0x8

. ss: 0x10

o ds: 0x10

. es: 0x10

[)

fs: 0x10

gs:

0x10
00210ea8
00210eac
00210eb0
00210eb4
00210eb8
00210ebc
00210ecO
00210ec4
00210ec8
00210ecc
00210ed0
00210ed4
00210ed8
00210edc
00210ee0
00210ee4

[00210ea8]
[00210eac]
[00210eb0]
[00210eb4]
[00210eb8]
[00210ebc]
[00210ecO]
[00210ec4]
[00210ec8]
[00210ecc]
[00210ed0]
[00210ed4]
[00210ed8]
[00210edc]
[00210ee0]
[00210ee4]

10111e
210ebc
10239e
0001
10a0e0
210edc
1024ce
1010101
1010101
1010101
107740
0001
10cd74
210flc
100bbc
107740

2517: stack at beginning of setjmp:

CPU

eax:
ecx:
edx:
ebx:
esp:
ebp:
esi:
edi:
eip:

efl
cs:
SSs:
ds:
es:
fs:

gs:

0-

0x10al44
0x6¢c65746e
0x0
0x10a0e0
0x210eal
0x210ebc
0x107¥20
0x107740

1089860
1818588270
0

1089760
2166432
2166460
1081120
1079104

ags 0x12
0x8
0x10
0x10
0x10
0x10
0x10
00210ea0
00210ea4
00210ea8
00210eac
00210eb0
00210eb4
00210eb8
00210ebc
00210ec0
00210ec4
00210ec8
00210ecc
00210ed0
00210ed4

0x102848

[00210ea0]
[00210ea4]
[00210ea8]
[00210eac]
[00210eb0]
[00210eb4]
[00210eb8]
[00210ebc]
[00210ec0]
[00210ec4]
[00210ec8]
[00210ecc]
[00210ed0]
[00210ed4]

1023cf
10al144
10111e
210ebc
10239e
0001
10a0e0
210edc
1024ce
1010101
1010101
1010101
107740
0001

<--- return address (sched)

2529: return 0!
2534: What is in jmpbuf of cpu 0? The stack is as follows:
CPU O:
eax: 0OxO 0
ecx: 0x6c65746e 1818588270
edx: 0x108aa4 1084068
ebx: 0x10a0e0 1089760
esp: 0x210eal 2166432
ebp: 0x210ebc 2166460
esi: 0x107f20 1081120
edi: 0x107740 1079104
eip: 0x10286e
eflags 0x46
cs: 0x8
ss: 0x10
ds: 0x10
es: O0x10
fs: 0x10
gs: 0x10
00210ea0 [00210eal0] 1023fe
00210ea4 [00210ead4] 108aad
00210ea8 [00210ea8] 1011l11le
00210eac [00210eac] 210ebc
00210eb0 [00210eb0] 10239e
00210eb4 [00210eb4] 0001
00210eb8 [00210eb8] 10a0el
00210ebc [00210ebc] 210edc
00210ecO [00210ecO] 1024ce
00210ec4 [00210ec4] 1010101
00210ec8 [00210ec8] 1010101
00210ecc [00210ecc] 1010101
00210ed0 [00210ed0] 107740
00210ed4 [00210ed4] 0001
00210ed8 [00210ed8] 10cd74
00210edc [00210edc] 210fic
2547: return 1! stack looks as follows:
CPU O:
eax: Ox1 1
ecx: 0x108aa0 1084064
edx: 0x108aa4 1084068
ebx: 0x10074 65652
esp: 0x108d40 1084736
ebp: 0x108d5c 1084764
esi: 0x10074 65652
edi: Oxffde 65502

eip

00210ed8 [00210ed8] 10cd74
00210edc [00210edc] 210flc
2519: What is saved in jmpbuf of proc[0]?

: 0x102892

efl
Ccs:
Ss:
ds:
es:
fs:

gs:

ags 0x6
0x8
0x10
0x10
0x10
0x10
0x10
00108d40
00108d44
00108d48
00108d4c
00108d50
00108d54
00108d58
00108d5c
00108d60
00108d64
00108d68
00108d6¢
00108d70
00108d74
00108d78
00108d7c

[00108d40]
[00108d44]
[00108d48]
[00108d4c]
[00108d50]
[00108d54]
[00108d58]
[00108d5¢]
[00108d60]
[00108d64]
[00108d68]
[00108d6c]
[00108d70]
[00108d74]
[00108d78]
[00108d7c]

10231c
10al144
0010
0021
0000
0000
10a0e0
0000
0001
0000
0000
0000
0000
0000
0000
0000

2548: where will longjmp return? (answer: 10231c, in scheduler)

2233:Scheduler on each processor selects in a round-robin fashion the first
runnable process. Which process will that be? (If we are running with one
processor.) (Ans: proc[0].)
2229: what will be saved in cpu's jmpbuf?
What is in proc[0]'s jmpbuf?
2548: return 1. Stack looks as follows:

CPU

eax:
ecx:
edx:
ebx:
esp:
ebp:
esi:
edi:
eip:

efl
cs:
SSs:
ds:
es:
fs:

gs:

0:
Ox1 1
0x6c65746e 1818588270
0x0 0
0x10a0e0 1089760
0x210ea0l 2166432
0x210ebc 2166460
0x107F20 1081120
0x107740 1079104
0x102892

ags 0x2
0x8
0x10
0x10
0x10
0x10
0x10

00210ea0 [00210ea0] 1023cf <--- return to sleep
00210ea4 [00210ead4] 108aa4

00210ea8
00210eac
00210eb0
00210eb4
00210eb8
00210ebc
00210ec0
00210ec4
00210ec8
00210ecc
00210ed0
00210ed4
00210ed8
00210edc

Why switch from proc[0] to the processor stack, and then to proc[0]'s stack? Why not
instead run the scheduler on the kernel stack of the last process that run on that cpu?

o If the scheduler wanted to use the process stack, then it couldn't have any stack
variables live across process scheduling, since they'd be different depending on

[00210ea8]
[00210eac]
[00210eb0]
[00210eb4]
[00210eb8]
[00210ebc]
[00210ec0]
[00210ec4]
[00210ec8]
[00210ecc]
[00210ed0]
[00210ed4]
[00210ed8]
[00210edc]

10111e
210ebc
10239e
0001
10a0e0
210edc
1024ce
1010101
1010101
1010101
107740
0001
10cd74
210f1c

which process just stopped running.

e Suppose process p goes to sleep on CPU1, so CPUL1 is idling in scheduler() on p's
stack. Someone wakes up p. CPU2 decides to run p. Now p is running on its
stack, and CPUL is also running on the same stack. They will likely scribble on
each others' local variables, return pointers, etc.

e The same thing happens if CPUL1 tries to reuse the process's page tables to avoid a
TLB flush. If the process gets killed and cleaned up by the other CPU, now the
page tables are wrong. | think some OSes actually do this (with appropriate ref

counting).

How is preemptive scheduling implemented in xv6? Answer see trap.c line 2905 through
2917, and the implementation of yield() on sheet 22.

How long is a timeslice for a user process? (possibly very short; very important lock is

held across context switch!)

	Threads, processes, and context switching
	Overview
	xv6 code examples

