
Homework: intro to xv6
This lecture is the introduction to xv6, our re-implementation of Unix v6. Read the source
code in the assigned files. You won't have to understand the details yet; we will focus on
how the first user-level process comes into existence after the computer is turned on.

Hand-In Procedure for Sep 18

You are to turn in this homework during lecture. Please write up your answers to the
exercises below and hand them in to a 6.828 staff member at the beginning of lecture.

Assignment:
Download xv6 and expand the tar ball:

Download xv6_rev0.zip and xv6.pdf from the assignments section page.

Extract the folder xv6 from xv6_rev0.zip

Build xv6:
$ cd xv6
$ make
cc -o mkfs mkfs.c
gcc -fno-builtin -O2 -Wall -MD -c -o usertests.o usertests.c
gcc -fno-builtin -O2 -Wall -MD -c -o ulib.o ulib.c
...
$
Find the address of the main0 function by looking in kernel.asm:
sh-3.00$ grep main0 kernel.asm
001015b0 <main0>:
 1015f0: 7e ee jle 1015e0 <main0+0x30>
 1016a7: 74 22 je 1016cb <main0+0x11b>
 1016d0: eb dc jmp 1016ae <main0+0xfe>
sh-3.00$
In this case, the address is 001015b0. Note that this address may be different on
Run the kernel inside Bochs, setting a breakpoint at the beginning of main0 (i.e., the
address you just found).
$ make bochs
if [! -e .bochsrc]; then ln -s dot-bochsrc .bochsrc; fi
bochs -q
===
=
 Bochs x86 Emulator 2.2.6
 Build from CVS snapshot on January 29, 2006
===
=
00000000000i[] reading configuration from .bochsrc

00000000000i[] installing x module as the Bochs GUI
00000000000i[] Warning: no rc file specified.
00000000000i[] using log file bochsout.txt
Next at t=0
(0) [0xfffffff0] f000:fff0 (unk. ctxt): jmp far f000:e05b ;
ea5be000f0
(1) [0xfffffff0] f000:fff0 (unk. ctxt): jmp far f000:e05b ;
ea5be000f0
<bochs> vb 0x8:0x1015b0
<bochs> c
(0) Breakpoint 1, 0x001015b0 (0x0008:0x001015b0)
Next at t=901856
(0) [0x001015b0] 0008:0x001015b0 (unk. ctxt): push ebp
; 55
(1) [0xfffffff0] f000:fff0 (unk. ctxt): jmp far f000:e05b ;
ea5be000f0
<bochs>
Look at the registers and the stack contents:
<bochs> info reg
...
<bochs> print-stack
...
<bochs>
Which part of the stack printout is actually the stack? (Hint: not all of it.) Identify all the
non-zero values on the stack.

Turn in: the output of print-stack with the valid part of the stack marked. Write a short
(3-5 word) comment next to each non-zero value explaining what it is.

Now look at kernel.asm for the instructions in main0 that read:

 1015fc: ba 7c a6 10 00 mov $0x10a67c,%edx
 101601: 89 d4 mov %edx,%esp
 101603: ba 9c a6 10 00 mov $0x10a69c,%edx
 101608: 89 d5 mov %edx,%ebp
(The addresses and constants might be different for you. Look for the moves into %esp
and %ebp).

Which lines in main.c do these instructions correspond to?

Set a breakpoint at the first of those instructions and let the program run until the
breakpoint:

<bochs> vb 0x8:0x1015fc
<bochs> s
Next at t=901858
(0) [0x00102ea8] 0008:0x00102ea8 (unk. ctxt): jnz .+0xfffffff7
; 75f7
(1) [0xfffffff0] f000:fff0 (unk. ctxt): jmp far f000:e05b ;
ea5be000f0
<bochs> c
(0) Breakpoint 2, 0x001015fc (0x0008:0x001015fc)
Next at t=1191513

(0) [0x001015fc] 0008:0x001015fc (unk. ctxt): mov edx, 0x0010a67c
; ba7ca61000
(1) [0xfffffff0] f000:fff0 (unk. ctxt): jmp far f000:e05b ;
ea5be000f0
<bochs>
(The first s command is necessary to single-step past the breakpoint, or else c will not
make any progress.)

Inspect the registers and stack again (info reg and print-stack). Then step past those
four instructions (s 4) and inspect them again. Convince yourself that the stack has
changed correctly.

Turn in: answers to the following questions. Look at the assembly for the call to
lapic_init that immediately follows the stack switch. Where does the bcpu argument
come from? What would have happened if the compiler had instead chosen to save bcpu
on the stack before those four assembly instructions? Would the code still work? Why or
why not?

(You can test your answer to the last two questions by running

$ make clean
$ make 'CFLAGS=-fno-builtin -Wall -MD'
to build a kernel without optimizations (the default CFLAGS in the Makefile also says -
O2). Without optimization, the compiler will use the stack for every variable reference.
Be sure to run make clean once you're finished experimenting.

	Homework: intro to xv6

