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Independence

1 Independent Events

Suppose that we flip two fair coins simultaneously on opposite sides of a room. Intu-
itively, the way one coin lands does not affect the way the other coin lands. The mathe-
matical concept that captures this intuition is called independence. In particular, events A
and B are independent if and only if:

Pr(ANB)=Pr(A)-Pr(B)

Generally, independence is something you assume in modeling a phenomenon— or wish
you could realistically assume. Many useful probability formulas only hold if certain
events are independent, so a dash of independence can greatly simplify the analysis of a
system.

1.1 Examples

Let’s return to the experiment of flipping two fair coins. Let A be the event that the first
coin comes up heads, and let B be the event that the second coin is heads. If we assume
that A and B are independent, then the probability that both coins come up heads is:

Pr(ANnB)="Pr(A)-Pr(B)
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On the other hand, let C' be the event that tomorrow is cloudy and R be the event that
tomorrow is rainy. Perhaps Pr (C) = 1/5 and Pr (R) = 1/10 around here. If these events
were independent, then we could conclude that the probability of a rainy, cloudy day was
quite small:

Pr(RNC)=Pr(R) -Pr(C)
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Unfortunately, these events are definitely not independent; in particular, every rainy day
is cloudy. Thus, the probability of a rainy, cloudy day is actually 1/10.
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1.2 Working with Independence

There is another way to think about independence that you may find more intuitive.
According to the definition, events A and B are independent if and only if:

Pr(AnB)=Pr(A) -Pr(B).

The equation on the left always holds if Pr(B) = 0. Otherwise, we can divide both
sides by Pr (B) and use the definition of conditional probability to obtain an alternative
definition of independence:

Pr(A| B) =Pr(A) or Pr(B) =0

This equation says that events A and B are independent if the probability of A is unaf-
fected by the fact that B happens. In these terms, the two coin tosses of the previous
section were independent, because the probability that one coin comes up heads is un-
affected by the fact that the other came up heads. Turning to our other example, the
probability of clouds in the sky is strongly affected by the fact that it is raining. So, as we
noted before, these events are not independent.

1.3 Some Intuition

Suppose that A and B are disjoint events, as shown in the figure below.
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Are these events independent? Let’s check. On one hand, we know
Pr(ANB)=0
because A N B contains no outcomes. On the other hand, we have
Pr(A)-Pr(B)>0

except in degenerate cases where A or B has zero probability. Thus, disjointness and inde-
pendence are very different ideas.

Here’s a better mental picture of what independent events look like.
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The sample space is the whole rectangle. Event A is a vertical stripe, and event B is a
horizontal stripe. Assume that the probability of each event is proportional to its area in
the diagram. Now if A covers an a-fraction of the sample space, and B covers a 3-fraction,
then the area of the intersection region is o - 3. In terms of probability:

Pr(AnNB)="Pr(A)-Pr(B)

1.4 An Experiment with Two Coins

Suppose that we flip two independent, fair coins. Consider the following two events:

A = the coins match (both are heads or both are tails)
B = the first coin is heads

Are these independent events? Intuitively, the answer is “no”. After all, whether or not
the coins match depends on how the first coin comes up; if we toss H H, they match, but
if we toss T'H, then they do not. However, the mathematical definition of independence
does not correspond perfectly to the intuitive notion of “unrelated” or “unconnected”.
These events actually are independent!

Claim 1. Events A and B are independent.

Proof. We must show that Pr(A N B) = Pr(A) - Pr(B).

Step 1: Find the Sample Space. As shown in the tree diagram below, there are four
possible outcomes: HH, HT,TH,and T'T.
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Step 2: Define Events of Interest. The outcomes in event A (coins match) and event B
(first coin is heads) are checked in the tree diagram above

Step 3: Compute Outcome Probabilities. Since the coins are independent and fair, all
edge probabilities are 1/2. We find outcome probabilities by multiplying edge probabili-
ties along each root-to-leaf path. All outcomes have probability 1/4.

Step 4: Compute Event Probabilities. Now we can verify that Pr(AN B) = Pr(A4) -
Pr(B):

Pr(A) = Pr(HH) + Pr(TT) = i n i _ %
1 1 1
Pr(B) = Pr(HH) + Pr(HT) = | + 7 =
1
Pr(ANB) =Pr(HH) = 2
Therefore, A and B are independent events as claimed. O

1.5 A Variation of the Two-Coin Experiment

Suppose that we alter the preceding experiment so that the coins are independent, but not
fair. In particular, suppose each coin is heads with probability p and tails with probability
1 — p where p might not be 1/2. As before, let A be the event that the coins match, and let
B the event that the first coin is heads. Are events A and B independent for all values of

p?

The problem is worked out in the tree diagram below.
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We can read event probabilities off the tree diagram:

Pr(A)=Pr(HH)+Pr(TT)=p* + (1 —p)?=2p> —2p+1
Pr(B) =Pr(HH)+Pr(HT) =p* +p(l —p) =p
Pr(ANB)=Pr(HH) = p*

Now events A and B are independent if and only if Pr (AN B) = Pr (A) - Pr (B) or, equiv-
alently:

(20" —2p+1)-p=p°

Since both sides are multiples of p, one solution is p = 0. Dividing both sides by p and
simplifying leaves a quadratic equation:

20 —3p+1=0

According to the quadratic formula, the remaining solutions are p = 1 and p = 1/2.

This analysis shows that events A and B are independent only if the coins are either fair
or completely biased toward either heads or tails. Evidently, there was some dependence
lurking at the fringes of the previous problem, but it was kept at bay because the coins
were fair!

The Ultimate Application

Surprisingly, this has an application to Ultimate Frisbee. Here is an excerpt from the Tenth
Edition rules:
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A. Representatives of the two teams each flip a disc. The representative of one team
calls “same” or “different” while the discs are in the air. The team winning the
flip has the choice of:

1. Receiving or throwing the initial throw-off; or

2. Selecting which goal they wish to defend initially.

B. The team losing the flip is given the remaining choice.

As we computed above, the probability that two flips match is:
Pr(A) =p* + (1 - p)?

Below we’ve plotted this match probability as a function of p, the probability that one disc
lands face-up.

Prob. that
"same" wins

1/2

Frisbees are asymmetric objects with strong aerodynamic properties, so p is not likely to
be 1/2. That plot shows that if there is any bias one way or the other, then saying “same”
wins more than half the time. In fact, even if frisbees land face up exactly half the time
(p = 1/2), then saying “same” still wins half the time. Therefore, might as well always say
“same” during the opening flip!

2 Mutual Independence

We have defined what it means for two events to be independent. But how can we talk
about independence when there are more than two events? For example, how can we say
that the orientations of n coins are all independent of one another?
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Events F, ..., E, are mutually independent if and only if for every subset of the events,
the probability of the intersection is the product of the probabilities. In other words, all of
the following equations must hold:

Pr(E;NE;) =Pr(E;) - Pr(E)) for all distinct i, j
Pr(E;NE;NEy) =Pr(E;)-Pr(E;) - Pr(Ey) for all distinct ¢, j, k
Pr(E;,NE;NE,NE)=Pr(E)-Pr(E;) Pr(E;)-Pr(E;) forall distincti, j, k,

Pr(EyN---NE,) ':”Pr (Ey)---Pr(E,)

As an example, if we toss 100 fair coins and let E; be the event that the ith coin lands
heads, then we might reasonably assume than £, . .., Eyo are mutually independent.

2.1 DNA Testing

This is testimony from the O. J. Simpson murder trial on May 15, 1995:

MR. CLARKE: When you make these estimations of frequency— and I believe you
touched a little bit on a concept called independence?

DR. COTTON: Yes, I did.
MR. CLARKE: And what is that again?

DR. COTTON: It means whether or not you inherit one allele that you have is not—
does not affect the second allele that you might get. That is, if you inherit a
band at 5,000 base pairs, that doesn’t mean you’ll automatically or with some
probability inherit one at 6,000. What you inherit from one parent is what you
inherit from the other. (Got that? — EAL)

MR. CLARKE: Why is that important?

DR. COTTON: Mathematically that’s important because if that were not the case, it
would be improper to multiply the frequencies between the different genetic
locations.

MR. CLARKE: How do you— well, first of all, are these markers independent that
you've described in your testing in this case?

The jury was told that genetic markers in blood found at the crime scene matched
Simpson’s. Furthermore, the probability that the markers would be found in a randomly-
selected person was at most 1 in 170 million. This astronomical figure was derived from
statistics such as:
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¢ 1 person in 100 has marker A.
* 1 person in 50 marker B.
¢ 1 person in 40 has marker C.
¢ 1 person in 5 has marker D.

* 1 person in 170 has marker F.

Then these numbers were multiplied to give the probability that a randomly-selected
person would have all five markers:

Pr(ANBNCNDNE)=Pr(A)-Pr(B)-Pr(C)-Pr(D)-Pr(E)
1 1 1 1 1

1
170,000, 000

The defense pointed out that this assumes that the markers appear mutually indepen-
dently. Furthermore, all the statistics were based on just a few hundred blood samples.
The jury was widely mocked for failing to “understand” the DNA evidence. If you were
a juror, would you accept the 1 in 170 million calculation?

2.2 Pairwise Independence

The definition of mutual independence seems awfully complicated— there are so many
conditions! Here’s an example that illustrates the subtlety of independence when more
than two events are involved and the need for all those conditions. Suppose that we flip
three fair, mutually-independent coins. Define the following events:

e A, is the event that coin 1 matches coin 2.
e A, is the event that coin 2 matches coin 3.
e A, is the event that coin 3 matches coin 1.
Are A;, As, A3 mutually independent?
The sample space for this experiment is:
{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT}

Every outcome has probability (1/2)* = 1/8 by our assumption that the coins are mutu-
ally independent.
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To see if events A;, Ay, and Az are mutually independent, we must check a sequence
of equalities. It will be helpful first to compute the probability of each event A;:

Pr(A))=Pr(HHH)+Pr(HHT)+Pr(TTH) + Pr(TTT)
1 1 1

1
sTsTsTs
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By symmetry, Pr (4;) = Pr (A3) = 1/2 as well. Now we can begin checking all the equali-
ties required for mutual independence.

Pr(A; N Ag) = Pr(HHH) + Pr (TTT)

ol —
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=Pr (A1> Pr (AQ)

By symmetry, Pr (A4; N A;) = Pr(A;) - Pr(As) and Pr(A; N A3) = Pr(A4,) - Pr(A4;) must
hold also. Finally, we must check one last condition:

Pr(A, N Ay N A3) = Pr(HHH) + Pr (TTT)
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¢:Pr(A4)Pr(AQ)Pr(A3)::é

The three events A, Ay, and Az are not mutually independent, even though all pairs of
events are independent!

A set of events in pairwise independent if every pair is independent. Pairwise inde-
pendence is a much weaker property than mutual independence. For example, suppose
that the prosecutors in the O. J. Simpson trial were wrong and markers A, B, C, D, and £
appear only pairwise independently. Then the probability that a randomly-selected person
has all five markers is no more than:

Pr(ANBNCNDNE)<Pr(AnE)
=Pr(A) -Pr(F)
11

T 100 170
1

~ 17,000
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The first line uses the fact that AN BN C N DN Eis asubset of AN E. (We picked out
the A and E markers because they’re the rarest.) We use pairwise independence on the
second line. Now the probability of a random match is 1 in 17,000— a far cry from 1 in
170 million! And this is the strongest conclusion we can reach assuming only pairwise
independence.

3 The Birthday Paradox

Suppose that there are 100 students in a lecture hall. There are 365 possible birthdays,
ignoring February 29. What is the probability that two students have the same birthday?
50%7? 90%? 99%? Let’s make some modeling assumptions:

* For each student, all possible birthdays are equally likely. The idea underlying this
assumption is that each student’s birthday is determined by a random process in-
volving parents, fate, and, um, some issues that we discussed earlier in the context
of graph theory. Our assumption is not completely accurate, however; a dispropor-
tionate number of babies are born in August and September, for example. (Counting
back nine months explains the reason why!)

* Birthdays are mutually independent. This isn’t perfectly accurate either. For exam-
ple, if there are twins in the lecture hall, then their birthdays are surely not indepen-
dent.

We'll stick with these assumptions, despite their limitations. Part of the reason is to sim-
plify the analysis. But the bigger reason is that our conclusions will apply to many situa-
tions in computer science where twins, leap days, and romantic holidays are not consid-
erations. Also in pursuit of generality, let’s switch from specific numbers to variables. Let
m be the number of people in the room, and let NV be the number of days in a year.

3.1 The Four-Step Method

We can solve this problem using the standard four-step method. However, a tree diagram
will be of little value because the sample space is so enormous. This time we’ll have to
proceed without the visual aid!

Step 1: Find the Sample Space

Let’s number the people in the room from 1 to m. An outcome of the experiment is a
sequence (by,...,b,) where b; is the birthday of the ith person. The sample space is the
set of all such sequences:

S={(br,....bp) | b€ {1,....,N}}
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Step 2: Define Events of Interest

Our goal is to determine the probability of the event A, in which some two people have
the same birthday. This event is a little awkward to study directly, however. So we’ll use
a common trick, which is to analyze the complementary event A, in which all m people
have different birthdays:

A= {(by,...,by) € S| all b; are distinct}

If we can compute Pr (A), then we can compute what we really want, Pr (A4), using the
relation: B
Pr(A)+Pr(4) =1

Step 3: Assign Outcome Probabilities

We need to compute the probability that m people have a particular combination of birth-
days (by,...,b,). There are N possible birthdays and all of them are equally likely for
each student. Therefore, the probability that the ith person was born on day b; is 1/N.
Since we're assuming that birthdays are mutually independent, we can multiply prob-
abilities. Therefore, the probability that the first person was born on day b,, the second
on day by, and so forth is (1/N)™. This is the probability of every outcome in the sample
space.

Step 4: Compute Event Probabilities

Now we’re interested in the probability of event A in which everyone has a different
birthday: B
A={(by,...,by) €S |allb; are distinct}

This is a gigantic set. In fact, there are NV choices for b;, N — 1 choices for b,, and so forth.
Therefore, by the Generalized Product Rule:

|[A|=N(N-=1)(N-2)...(N—=m+1)

The probability of the event A is the sum of the probabilities of all these outcomes. Hap-
pily, this sum is easy to compute, owing to the fact that every outcome has the same
probability:

We're done!
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3.2 An Alternative Approach

The probability theorems and formulas we’ve developed provide some other ways to
solve probability problems. Let’s demonstrate this by solving the birthday problem using
a different approach— which had better give the same answer! As before, there are m
people and N days in a year. Number the people from 1 to m, and let E; be the event that
the ith person has a birthday different from the preceding i — 1 people. In these terms, we
have:

Pr (all m birthdays different)
:PI'(ElﬂEgmmEm)
:PI'(El) 'PI'(EQ ’ El) 'PI'(E3 | ElﬂE2>PI'(Em | ElﬂﬂEmfl)

On the second line, we're using the Product Rule for probabilities. The nasty-looking
conditional probabilities aren’t really so bad. The first person has a birthday different
from all predecessors, because there are no predecessors:

Pr(E;) =1

We’re assuming that birthdates are equally probable and birthdays are independent, so
the probability that the second person has the same birthday as the first is only 1/N. Thus:

1
PI"(E2|E1):1—N

Given that the first two people have different birthdays, the third person shares a birthday
with one or the other with probability 2/N, so:

2
PI'(E3|E10E2>:]_—N

Extending this reasoning gives:

. . 1 2 m—1
Pr (all m birthdays different) = (1 - N) <1 - N) . (1 - T)

We’re done— again! This is our previous answer written in a different way.

3.3 An Approximate Solution

One justification we offered for teaching approximation techniques was that approximate
answers are often easier to work with and interpret than exact answers. Let’s use the
birthday problem as an illustration. We proved that m people all have different birthdays
with probability

. . 1 2 m—1
Pr (all m birthdays different) = (1 — N) <1 — N) e (1 — T)
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where N is the number of days in a year. This expression is exact, but inconvenient;
evaluating it would require Q(m) arithmetic operations. Furthermore, this expression
is difficult to interpret; for example, how many people must be in a room to make the
probability of a birthday match about 1/2? Hard to say!

Let’s look for a simpler, more meangingful approximate solution to the birthday prob-
lem. Our expression is a product, but we have more tools for coping with sums. So we
first translate the product into a sum by moving it “upstairs” with the rule u = e

Pr (all m birthdays different) = <1 — %) <1 — %) (1 — _m]; 1)
(=) 4+ In(1=2)+. .+ In(1 - =)

Now we can apply bounds on In(1 — ), which we obtained from Taylor’s Theorem:

—T

1_x§1n(1—x)§—x

From the upper bound, we get:

GMQ—ﬁ+MQ—%%h”+mG—%%H;—%—%—m——%ﬁ

On the last line, we're using the summation formula1+2+ ...+ (m —1) =m(m —1)/2.

The lower bound on In(1 — z) implies:

k —£ —k
n(1—-—)>—2~ =
n( N)‘l—% N—k

Substituting this fact into the birthday probability gives:

m— 1 2 _ _ ___m=1
eln(l — %) + 111(1 — %) 4+ ...+ 1I1(1 — Tl) 2 e N-1 N—2 s N—(m—l)
-t 2 _ _ _m=1
Z e N-m N-—m N-—m
m(m—1)
= 2(N-m)

On the second line, we increase all the denominators to make them equal so that we can
sum them.

So now we have closely-matching bounds on the probability that m people have dif-
ferent birthdays:

m(m—1) m(m—1)

e 2(N-m) < Pr(all m birthdays different) <e 2N
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The difference between the exponents is m?(m — 1) /2N (N — m), which goes to zero pro-
vided m = o(N?/?). So, in the limit, the ratio of the upper bound to the lower bound is
1. Since the exact probability is sandwiched in between these two, we have an asymptot-
ically tight solution to the birthday problem:

m(m—1)

Pr (all m birthdays different) ~ e 2N

3.4 Interpreting the Answer

Let’s use all this analysis get some concrete answers. If there are m = 100 people in a
room and N = 365 days in a year, then what is the probability that no two have the same
birthday? Our upper bound says this is at most:

Pr (100 are different) < ¢~ 10099/(236) < .0000013

So the odds 100 people have different birthdays are around 1 in a million!

In principle, there could be m = 365 people in a room, all with different birthdays.
However, the probability of that happening by chance is at most:

Pr (365 are different) < ¢~367:364/(2:365) — =182 (=79

Not gonna happen!

In fact, our upper bound implies that if there are only m = 23 people in a room, then
the probability that all have different birthdays is still less than half:

Pr (23 are different) < ¢=2322/(2365) 1 /9

In other words, a room with only m = 23 people contains two people with the same
birthday, more likely than not!

3.5 The Birthday Principle

How many people must be in a room so that there’s a half chance that two have the same
birthday?

Setting our approximate solution to the birthday problem equal to 1/2 and solving for

m gives:
m~ /(2In2)N ~ 1.18V/N.

This answer (which is asymptotically tight) is called the birthday principle:

If there are N days in a year and there are 1/(2In2)N people in a room, then
there is about an even chance that two have the same birthday.



Independence 15

An informal argument partly explains this phenomenon. Two people share a birthday
with probability 1/N. Therefore, we should expect to find matching birthdays when the
number of pairs of people in the room is around N, which happens when () = N or

m ~ V2N, which roughly agrees with the Birthday Principle.

The Birthday Principle is a great rule of thumb with surprisingly many applications.
For example, cryptographic systems and digital signature schemes must be hardened
against “birthday attacks”. The principle also says a hash table with N buckets starts to
experience collisions when around /(21n2) N items are inserted.
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