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LECTURE 1
AN INTRODUCTION TO THE COURSE

LECTURE OUTLINE

e The Role of Convexity in Optimization
e Duality Theory
e Algorithms and Duality

e Course Organization



HISTORY AND PREHISTORY

e Prehistory: Early 1900s - 1949.
— Caratheodory, Minkowski, Steinitz, Farkas.

— Properties of convex sets and functions.

e Fenchel - Rockafellar era: 1949 - mid 1980s.
— Duality theory.
— Minimax/game theory (von Neumann).

— (Sub)differentiability, optimality conditions,
sensitivity.

e Modern era - Paradigm shift: Mid 1980s - present.

— Nonsmooth analysis (a theoretical/esoteric
direction).

— Algorithms (a practical /high impact direc-
tion).

— A change in the assumptions underlying the
field.



OPTIMIZATION PROBLEMS

e Generic form:
minimize f(x)

subject to x € C

Cost function f : R™ — R, constraint set C, e.g.,

C=Xn{z|hi(x)=0,...,hn(z) =0}
N{z|g(z) <0,...,g-(x) <0}
e Continuous vs discrete problem distinction
e (Convex programming problems are those for
which f and C are convex
— They are continuous problems
— They are nice, and have beautiful and intu-

1tive structure

e However, convexity permeates all of optimiza-
tion, including discrete problems

e Principal vehicle for continuous-discrete con-
nection is duality:

— The dual problem of a discrete problem is
continuous/convex

— The dual problem provides important infor-
mation for the solution of the discrete primal
(e.g., lower bounds, etc)



WHY IS CONVEXITY SO SPECIAL?

e A convex function has no local minima that are
not global

e A nonconvex function can be “convexified” while
maintaining the optimality of its global minima,

e A convex set has a nonempty relative interior

e A convex set is connected and has feasible di-
rections at any point

e The existence of a global minimum of a convex
function over a convex set is conveniently charac-
terized in terms of directions of recession

e A polyhedral convex set is characterized in
terms of a finite set of extreme points and extreme
directions

e A real-valued convex function is continuous and
has nice differentiability properties

e (losed convex cones are self-dual with respect
to polarity

e Convex, lower semicontinuous functions are self-
dual with respect to conjugacy



DUALITY

e Two different views of the same object.

e Example: Dual description of signals.

Time domain P Frequency domain

e Dual description of closed convex sets

A union of points An intersection of halfspaces



DUAL DESCRIPTION OF CONVEX FUNCTIONS
e Define a closed convex function by its epigraph.
e Describe the epigraph by hyperplanes.

e Associate hyperplanes with crossing points (the
conjugate function).

Primal Description Dual Description

Values f(x) Crossing points f*(y)



FENCHEL PRIMAL AND DUAL PROBLEMS

A
fi(z)
\
Frw)+ F5(0)—
fr-v
0
Primal Problem Description Dual Problem Description
Vertical Distances Crossing Point Differentials

e Primal problem:

min { f1(z) + f2(z)}

A

e Dual problem:
max { — f{(y) = f5(-y)}

where f;" and fJ are the conjugates



FENCHEL DUALITY

min { f1(2) + fa(2)} = max { = f(y) = f3(-)}

h (a:\) ——Slope y*

e Under favorable conditions (convexity):
— The optimal primal and dual values are equal

— The optimal primal and dual solutions are
related



A MORE ABSTRACT VIEW OF DUALITY

e Despite its elegance, the Fenchel framework is
somewhat indirect.

e From duality of set descriptions, to
— duality of functional descriptions, to

— duality of problem descriptions.

e A more direct approach:
— Start with a set, then

— Define two simple prototype problems dual
to each other.

e Avoid functional descriptions (a simpler, less
constrained framework).



MIN COMMON/MAX CROSSING DUALITY

Min Common
Point w*

w A Min Common
Point w*

Max Cr’ossing>< ! Max Crgésing \ ’

Point ¢* B Point ¢* \
(a) (b)

Min Common
Point w* |

Max Crossing
Point ¢* '

e All of duality theory and all of (convex/concave)
minimax theory can be developed/explained in
terms of this one figure.

e The machinery of convex analysis is needed to
flesh out this figure, and to rule out the excep-
tional /pathological behavior shown in (c).



ABSTRACT/GENERAL DUALITY ANALYSIS

Abstract Geometric Framework

(Set M)

1

Min-Common /Max-Crossing
Theorems

Special|choices
of |M

A 4

Minimax Duality Constrained Optimization Theorems of the
( MinMax = MaxMin ) Duality Alternative etc




EXCEPTIONAL BEHAVIOR

e If convex structure is so favorable, what is the
source of exceptional /pathological behavior?

e Answer: Some common operations on convex
sets do not preserve some basic properties.

e Example: A linearly transformed closed con-
vex set need not be closed (contrary to compact
and polyhedral sets).

— Also the vector sum of two closed convex sets
need not be closed.

A Ci = {(:1:1,332) ICBl > 0.rs >0, 155 = 1}

“ AN

Z1

CQ = {(CL‘l,xz) | I = 0}

e This is a major reason for the analytical difficul-
ties in convex analysis and pathological behavior
in convex optimization (and the favorable charac-
ter of polyhedral sets).



MODERN VIEW OF CONVEX OPTIMIZATION

e Traditional view: Pre 1990s
— LPs are solved by simplex method

— NLPs are solved by gradient /Newton meth-
ods

— Convex programs are special cases of NLPs

Simplex Duality Gradient /Newton

e Modern view: Post 1990s

— LPs are often solved by nonsimplex/convex
methods

— Convex problems are often solved by the same
methods as LPs

— “Key distinction is not Linear-Nonlinear but
Convex-Nonconvex” (Rockafellar)

Duahty Gradient /Newton

Simplex Cutting plane

Interior point
Subgradient



THE RISE OF THE ALGORITHMIC ERA

e Convex programs and LPs connect around
— Duality

— Large-scale piecewise linear problems

e Synergy of:
— Duality
— Algorithms
— Applications

e New problem paradigms with rich applications

e Duality-based decomposition
— Large-scale resource allocation
— Lagrangian relaxation, discrete optimization

— Stochastic programming

e Conic programming
— Robust optimization

— Semidefinite programming

e Machine learning
— Support vector machines

— [1 regularization /Robust regression /Compressed
sensing



METHODOLOGICAL TRENDS

e New methods, renewed interest in old methods.

Interior point methods
Subgradient /incremental methods

Polyhedral approximation /cutting plane meth-
ods

Regularization /proximal methods

Incremental methods

e Renewed emphasis on complexity analysis

Nesterov, Nemirovski, and others ...

“Optimal algorithms” (e.g., extrapolated gra-
dient methods)

e Emphasis on interesting (often duality-related)
large-scale special structures



COURSE OUTLINE

e We will follow closely the textbook

— Bertsekas, “Convex Optimization Theory,”
Athena Scientific, 2009, including the on-line
Chapter 6 and supplementary material at
http://www.athenasc.com /convexduality.html

e Additional book references:
— Rockafellar, “Convex Analysis,” 1970.

— Boyd and Vanderbergue, “Convex Optimiza-

tion,” Cambridge U. Press, 2004. (On-line at
http://www.stanford.edu/~boyd/cvxbook/)

— Bertsekas, Nedic, and Ozdaglar, “Convex Anal-
ysis and Optimization,” Ath. Scientific, 2003.

e Topics (the text’s design is modular, and the
following sequence involves no loss of continuity):
— Basic Convexity Concepts: Sect. 1.1-1.4.
— Convexity and Optimization: Ch. 3.
— Hyperplanes & Conjugacy: Sect. 1.5, 1.6.
— Polyhedral Convexity: Ch. 2.
— Geometric Duality Framework: Ch. 4.
— Duality Theory: Sect. 5.1-5.3.
— Subgradients: Sect. 5.4.
— Algorithms: Ch. 6.


http://www.athenasc.com/convexduality.html
http://www.stanford.edu/~boyd/cvxbook/

WHAT TO EXPECT FROM THIS COURSE

e Requirements: Homework (25%), midterm (25%),
and a term paper (50%)

e We aim:

— To develop insight and deep understanding
of a fundamental optimization topic

— To treat with mathematical rigor an impor-
tant branch of methodological research, and
to provide an account of the state of the art

in the field

— To get an understanding of the merits, limi-
tations, and characteristics of the rich set of
available algorithms

e Mathematical level:

— Prerequisites are linear algebra (preferably
abstract) and real analysis (a course in each)

— Proofs will matter ... but the rich geometry
of the subject helps guide the mathematics

e Applications:

— They are many and pervasive ... but don’t
expect much in this course. The book by
Boyd and Vandenberghe describes a lot of
practical convex optimization models

— You can do your term paper on an applica-
tion area



A NOTE ON THESE SLIDES

e These slides are a teaching aid, not a text

e Don’t expect a rigorous mathematical develop-
ment

e The statements of theorems are fairly precise,
but the proofs are not

e Many proofs have been omitted or greatly ab-
breviated

e Figures are meant to convey and enhance un-
derstanding of ideas, not to express them precisely

e The omitted proofs and a fuller discussion can
be found in the “Convex Optimization Theory”
textbook and its supplementary material



LECTURE 2

LECTURE OUTLINE

e (Convex sets and functions
e Epigraphs
e (losed convex functions

e Recognizing convex functions

Reading: Section 1.1



SOME MATH CONVENTIONS

e All of our work is done in ": space of n-tuples
r=(x1,...,Tn)

e All vectors are assumed column vectors

@y

° denotes transpose, so we use x’ to denote a

row vector

e 1’y is the inner product Y. | x;y; of vectors
and y

o ||z|| = V2'x is the (Euclidean) norm of x. We
use this norm almost exclusively

e See the textbook for an overview of the linear
algebra and real analysis background that we will
use. Particularly the following:

— Definition of sup and inf of a set of real num-
bers

— Convergence of sequences (definitions of lim inf,
lim sup of a sequence of real numbers, and
definition of lim of a sequence of vectors)

— Open, closed, and compact sets and their
properties

— Definition and properties of differentiation



CONVEX SETS
ar+ (l-a)y, 0<a<l

e A subset C of " is called convex if
ar+ (1 —a)y € C, Vz,yeC, Vael01l]

e Operations that preserve convexity

— Intersection, scalar multiplication, vector sum,
closure, interior, linear transformations

e Special convex sets:
, 0 a1
— Po

lyhedral sets: Nonempty sets of the form

{oldw<bj,j=1,...r)

(always convex, closed, not always bounded)

— Cones: Sets C such that \x € C for all
A > 0 and x € C (not always convex or
closed)



CONVEX FUNCTIONS

e Let C be a convex subset of R*. A function
f:C— Ris called conver if for all a € [0, 1]

flaz+(l-a)y) < af(z)+(1-a)f(y), Vz,yel

If the inequality is strict whenever a € (0,1) and
x = vy, then f is called strictly convex over C.

e If f is a convex function, then all its level sets

{z e O] f(z) <vtand{z e C] fz) <9}

where 7 is a scalar, are convex.



EXTENDED REAL-VALUED FUNCTIONS

A f(z) Epigraph A f(z) Epigraph

\ e

Y____2

o } } e
- —p >
Convex function Nonconvex function

e The epigraph of a function f : X — [—o00, 0] is
the subset of Rnt!l given by

epi(f) = {(w,w) |z € X, w € R, f(z) < w}
e The effective domain of f is the set

dom(f) ={z € X | f(z) < oo}

e We say that f is convex if epi(f) is a convex
set. If f(x) > —oco for all z € X and X is convex,
the definition “coincides” with the earlier one.

e We say that f is closed if epi(f) is a closed set.

e We say that f is lower semicontinuous at a
vector x € X if f(x) < liminfy_ o f(xx) for every
sequence {zy} C X with xx — .



CLOSEDNESS AND SEMICONTINUITY 1

e Proposition: For a function f : R" — [—o0, 00|,
the following are equivalent:

(i) V; ={z| f(z) <~} is closed for all v € R.
(ii) f is lower semicontinuous at all z € R».
(iii) f is closed.

f(z)

Y

P €T

{z|f@2) <~}

o (ii) = (ili): Let {(zx,wr)} C epi(f) with
(xr,wg) — (x,w). Then f(xy) < wi, and
f(x) <liminf f(zr) <w so (x,w) € epi(f)

k— oo
o (iii) = (i): Let {zx} C V5 and xp — x. Then
(ZUk,’Y) = epl(f) and ($k7,y) — (ZIJ,’)/), S0 (ZC,’}/) =
epi(f), and x € V.
o (i)= (ii): fxp — zand f(z) > v > liminfy . f(zg
consider subsequence {x;}x — = with f(zg) <~
- contradicts closedness of V.



CLOSEDNESS AND SEMICONTINUITY 11

e Lower semicontinuity of a function is a “domain-
specific” property, but closeness is not:

— If we change the domain of the function with-
out changing its epigraph, its lower semicon-
tinuity properties may be affected.

— Example: Define f: (0,1) — [—o0, o0] and

A

f:10,1] — [—o00, 00] by
f(x) =0, Ve (0,1),

F(x) = {o if z € (0,1),

x ifx=0o0rxz=1.

Then f and f have the same epigraph, and
both are not closed. But f is lower-semicon-
tinuous while f is not.

e Note that:

— If f is lower semicontinuous at all x € dom(f),
it is not necessarily closed

— If fis closed, dom(f) is not necessarily closed
e Proposition: Let f : X — [—o00, 0] be a func-

tion. If dom(f) is closed and f is lower semicon-
tinuous at all x € dom(f), then f is closed.



ROPER AND IMPROPER CONVEX FUNCTION

Not Closed Improper Function Closed Improper Function

e We say that f is properif f(x) < oo for at least
one z € X and f(x) > —oo for all z € X, and we
will call f improper if it is not proper.

e Note that f is proper if and only if its epigraph
is nonempty and does not contain a “vertical line.”

e An improper closed convex function is very pe-
culiar: it takes an infinite value (oo or —oo) at
every point.



RECOGNIZING CONVEX FUNCTIONS

e Some important classes of elementary convex
functions: Affine functions, positive semidefinite
quadratic functions, norm functions, etc.

e Proposition: Let f; : R — (—o00,00], i € I, be
given functions (I is an arbitrary index set).

(a) The function g : R +— (—o0, 00| given by

g(x) = Mfi(@) + -+ Amfm(@), A >0

is convex (or closed) if fi,..., fin are convex (re-
spectively, closed).

(b) The function g : ®" +— (—o00, 00| given by
g(x) = f(Az)

where A is an m X n matrix is convex (or closed)
if f is convex (respectively, closed).

(¢) The function g : ™ — (—o0, 00| given by

g(z) = Sup fi(x)

is convex (or closed) if the f; are convex (respec-
tively, closed).



LECTURE 3
LECTURE OUTLINE

e Differentiable Convex Functions
e (Convex and Affine Hulls
e (Caratheodory’s Theorem

e Relative Interior

Reading: Sections 1.1, 1.2, 1.3.0



DIFFERENTIABLE CONVEX FUNCTIONS

r)+Vi(x)(z—=x
f(/)+ f()(z — =)

>
Z

e Let C' C R” be a convex set and let f : k" — R
be differentiable over FR7.

(a) The function f is convex over C' iff

f(z) = f(z)+(z—2)V[f(z), Vz,zel

(b) If the inequality is strict whenever z = z,
then f is strictly convex over C.



PROOF IDEAS

Y

z=o0zx+(1—a)y

x

f(z)




OPTIMALITY CONDITION

e Let C be a nonempty convex subset of " and
let f:R"” — R be convex and differentiable over
an open set that contains C'. Then a vector z* € C
minimizes f over C' if and only if

Vf(x*)(x—ax*) >0, Vaedl.

Proof: If the condition holds, then
f(x) = fa*)+(z—a*)'V f(z*) = f(a*), VaeCl,

so x* minimizes f over C.

Converse: Assume the contrary, i.e., x* min-
imizes f over C and V f(x*)'(x —2z*) < 0 for some
x € C. By differentiation, we have

lim fla=+ale —a7)) = f@7) = Vf(x*) (r—x*) <0

a0 Q

so f(z* 4+ a(z — 2*)) decreases strictly for suffi-

ciently small o > 0, contradicting the optimality
of z*. Q.E.D.



TWICE DIFFERENTIABLE CONVEX FNS

e Let C be a convex subset of R and let f :
R +— R be twice continuously differentiable over

R,

(a) If V2f(x) is positive semidefinite for all x €
C', then f is convex over C.

(b) If V2f(x) is positive definite for all x € C,
then f is strictly convex over C.

(c) If C is open and f is convex over C', then
V2 f(x) is positive semidefinite for all z € C.

Proof: (a) By mean value theorem, for x,y € C

f@W) = f(@)+y—z) VI@)+) (y—2)'V2f(s4a(y—2))(y—)

for some o € [0,1]. Using the positive semidefi-
niteness of V2 f, we obtain

fly) = fz) +(y —2)Vfz), Vzyel

From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(z) + (y —
x)'V f(x) for all x,y € C with x # y, and we use
the preceding result.

(c) By contradiction ... similar.



CONVEX AND AFFINE HULLS

e Given a set X C Rn:

o A convex combination of elements of X is a
vector of the form > " | a;x;, where z; € X, a; >
0, and > ", a; = 1.

e The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X. (Can
be shown to be equal to the set of all convex com-
binations from X).

e The affine hull of X, denoted aff(X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form x + S, where S is a sub-
space).

e A nonnegative combination of elements of X is
a vector of the form > " | «;x;, where z; € X and
«; > 0 for all s.

e The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:
— It is a convex cone containing the origin.
— It need not be closed!

— If X is a finite set, cone(X) is closed (non-
trivial to show!)



1

CARATHEODORY’S THEOREM

x4 Z2
conv(X)

Z2

T1

I3

(a) (b)

e Let X be a nonempty subset of R~.

(a)

Every x = 0 in cone(X) can be represented
as a positive combination of vectors 1, ..., Tm
from X that are linearly independent (so
m < n).

Every x ¢ X that belongs to conv(X) can
be represented as a convex combination of
vectors =1,...,xTm from X with m <n + 1.

T4 Z2
conv(X)



PROOF OF CARATHEODORY’S THEOREM

(a) Let = be a nonzero vector in cone(X), and
let m be the smallest integer such that x has the
form Y " a;xz;, where o; > 0 and z; € X for
all 2+ = 1,...,m. If the vectors z; were linearly
dependent, there would exist A1,..., A\, With

zm: )\@'a:'i =0
1=1

and at least one of the \; is positive. Consider

m

Z(Ozz‘ — YA T4,

i=1
where v is the largest v such that a; —vA; > 0 for
all 2. This combination provides a representation
of x as a positive combination of fewer than m vec-
tors of X —a contradiction. Therefore, x1,...,Tm,
are linearly independent.

(b) Use “lifting” argument: apply part (a) to Y =
{(z,1) |z € X}.




AN APPLICATION OF CARATHEODORY

e The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X ) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X) can

be expressed as {21 ) akx’“} where for all k£ and

i, af >0, zF € X, an dZnH * = 1. Since the
sequence

{(oz’f,...,ozfjJrl,a;’f,...,azﬁJrl)}

is bounded, it has a limit point

{(O{l, ey On4+1,T1y ... 7£UTL—|—1)}7

which must satisfy Z 1 o; = 1, and o; > 0,
x; € X for all 7.
The vector ZZ G belongs to conv(X)

and is a limit point of {ZZ ok }, showing
that conv(X) is compact. Q.E.D.

e Note that the convex hull of a closed set need
not be closed!



RELATIVE INTERIOR

e x is a relative interior point of C, if x is an
interior point of C' relative to aff(C').

e ri(C') denotes the relative interior of C, i.e., the
set of all relative interior points of C.

e Line Segment Principle: If C is a convex set,
xz € ri(C') and x € cl(C'), then all points on the
line segment connecting x and x, except possibly
x, belong to ri(C).

e Proof of case where x € C': See the figure.

e Proof of case where ¢ C: Take sequence
{z}} C C with xx — x. Argue as in the figure.



ADDITIONAL MAJOR RESULTS

e Let C be a nonempty convex set.

(a) ri(C') is a nonempty convex set, and has the
same affine hull as C.

(b) Prolongation Lemma: x € ri(C) if and
only if every line segment in C having x
as one endpoint can be prolonged beyond x
without leaving C.

z1 and 22 are linearly
independent, belong to
C' and span aff(C)

Proof: (a) Assume that 0 € C'. We choose m lin-
early independent vectors zi1,...,zm € C, where
m is the dimension of aff (C), and we let

X = {f:ozzzl iai<1, Ozz->0,i:1,...,m}
1=1 1=1

(b) => is clear by the def. of rel. interior. Reverse:
take any x € ri(C'); use Line Segment Principle.




OPTIMIZATION APPLICATION

e A concave function f : " — R that attains its
minimum over a convex set X at an x* € ri(X)
must be constant over X.

aff (X)

Proof: (By contradiction) Let z € X be such
that f(z) > f(x*). Prolong beyond z* the line
segment x-to-r* to a point x € X. By concavity
of f, we have for some « € (0, 1)

fla*) 2 af(z) + (1 —a)f(z),

and since f(x) > f(z*), we must have f(x*) >
f(x) - a contradiction. Q.E.D.

e Corollary: A linear function can attain a min-
inum only at the boundary of a convex set.



LECTURE 4

LECTURE OUTLINE

e Algebra of relative interiors and closures
e Continuity of convex functions
e C(losures of functions

e Recession cones and lineality space

Reading: Sections 1.31-1.3.3, 1.4.0



CALCULUS OF REL. INTERIORS: SUMMARY

e The ri(C') and cl(C) of a convex set C' “differ
very little.”

— Any set “between” ri(C) and cl(C) has the
same relative interior and closure.

— The relative interior of a convex set is equal
to the relative interior of its closure.

— The closure of the relative interior of a con-
vex set is equal to its closure.

e Relative interior and closure commute with
Cartesian product and inverse image under a lin-
ear transformation.

e Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

e Neither relative interior nor closure commute
with set intersection.



CLOSURE VS RELATIVE INTERIOR

e Proposition:
(a) We have cl(C) = cl(ri(C)) and ri(C') = ri(cl(C)).

(b) Let C be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.
(i) C and C have the same closure.
(iii) ri(C) C C C cl(C).

Proof: (a) Since ri(C') C C, we have cl(ri(C))) C
cl(C). Conversely, let = € cl(C). Let x € ri(C).
By the Line Segment Principle, we have

ar + (1 — a)x € ri(C), vV a e (0,1].

Thus, x is the limit of a sequence that lies in ri(C),

so z € cl(ri(C)).

XI

The proof of ri(C) = ri(cl(C)) is similar.



LINEAR TRANSFORMATIONS

e Let C be a nonempty convex subset of " and
let A be an m X n matrix.

(a) We have A -ri(C) =ri(A - C).

(b) We have A -cl(C) C cl(A - C). Furthermore,
if C'is bounded, then A - cl(C) = cl(A - C).

Proof: (a) Intuition: Spheres within C' are mapped
onto spheres within A - C' (relative to the affine
hull).

(b) We have A-cl(C') C cl(A-C), since if a sequence
{x} C C converges to some x € cl(C) then the
sequence { Axy }, which belongs to A-C, converges
to Az, implying that Ax € cl(A - C).

To show the converse, assuming that C' is
bounded, choose any z € cl(A - C). Then, there
exists {xy} C C such that Az — z. Since C is
bounded, {x;} has a subsequence that converges

to some = € cl(C'), and we must have Ax = z. It
follows that z € A - cl(C). Q.E.D.

Note that in general, we may have

A-int(C) # int(A - C), A-cl(C) #cl(A-C)



INTERSECTIONS AND VECTOR SUMS

e Let C; and (2 be nonempty convex sets.

(a) We have
ri(Ch + C2) =1i(Ch) + 1i(C2),

cl(C1) + cl(C2) C cl(C + C9)
If one of C'7 and (5 is bounded, then

Cl(Cl) -+ CI(CQ) = 61(01 -+ CQ)

(b) If ri(C1) Nri(C2) # O, then
I‘i(Ol M CQ) — I‘i(C1) M I'i(CQ),

CI(C1 M CQ) — Cl(Cl) M CI(CQ)

Proof of (a): C; + (5 is the result of the linear
transformation (x1,x2) — x1 + x2.

e Counterexample for (b):

Chr ={z |z <0}, Co={x |z >0}



CARTESIAN PRODUCT - GENERALIZATION

e Let C be convex set in *nt™, For € R, let

Ce =1y | (z,y) € C},

and let
D ={z|Cy # O}

Then

ri(C) = {(z,y) | z € 1i(D), y € ri(Cy) }.

Proof: Since D is projection of C' on z-axis,
ri(D) = {x | there exists y € ®™ with (z,y) € ri(C)},
so that

ri(C) = Uzeri(D) <Mx 4 ri(C)),

where M, = {(z,y) | y € ®m}. For every z €
ri(D), we have

M, Nri(C) =1i(M, N C) = {(z,y) | y € 1i(Cy) }.

Combine the preceding two equations. Q.E.D.



CONTINUITY OF CONVEX FUNCTIONS

o If f: K" — RN is convex, then it is continuous.

es=(—-1,1) g e1=(1,1)

es = (—1,—1) Zk ey =(1,—1)

Proof: We will show that f is continuous at O.
By convexity, f is bounded within the unit cube
by the max value of f over the corners of the cube.

Consider sequence i — 0 and the sequences

Yr = T/ ||Tk||co, 26 = —Tk/||7k]|cc- Then
flar) < (1= [lzklloc) £(0) + [lzk]loo f (yr)

|k ]loo 1

f(zk) + 2o + 1 f(zk)

Take limit as £ — oo. Since ||zg||coc — 0, we have

limsup ||z ||co f(yr) < 0, limsup Ixlloc f(zx) <0

so f(xx) — f(0). Q.E.D.

e FExtension to continuity over ri(dom( f)).



CLOSURES OF FUNCTIONS

e The closure of a function f : X +— [—00,00] is
the function cl f : R — [—00, 00| with

epi(cl f) = cl(epi(f))
e The convez closure of f is the function cl f with

epi(cl f) = cl(conv (epi(f)))

e Proposition: For any f : X — [—00, 00]

inf f(z)= inf (cl f)(x) = inf (cl f)(x).

reX rERT TERM

Also, any vector that attains the infimum of f over
X also attains the infimum of cl f and cl f.

e Proposition: For any f : X — |—00, 00]:

(a) cl f (or cl f) is the greatest closed (or closed
convex, resp.) function majorized by f.

(b) If f is convex, then cl f is convex, and it is
proper if and only if f is proper. Also,

(@ f)@) = f(@), Ve ri(dom(f).
and if z € ri(dom(f)) and y € dom(cl f),

(c1f)(y) = lim f(y + alz —y)).



RECESSION CONE OF A CONVEX SET

e Given a nonempty convex set C, a vector d is
a direction of recession if starting at any x in C
and going indefinitely along d, we never cross the
relative boundary of C' to points outside C"

x+ade C, Veel, YVa>0

Recession Cone Ro

C

d

e Recession cone of C' (denoted by R¢): The set
of all directions of recession.

e R is a cone containing the origin.



RECESSION CONE THEOREM

e Let (' be a nonempty closed convex set.

(a) The recession cone R¢ is a closed convex
cone.

(b) A vector d belongs to R¢ if and only if there
exists some vector x € C such that x + ad €
C for all o > 0.

(¢) Rc contains a nonzero direction if and only
it C' is unbounded.

(d) The recession cones of C' and ri(C') are equal.

(e) If D is another closed convex set such that
CND+# O, we have

Rcnp = Rc N Rp
More generally, for any collection of closed
convex sets C;, © € I, where [ is an arbitrary

index set and N;c7C; is nonempty, we have

Rﬂiefcz' — m’iGIRCz'



PROOF OF PART (B)

Let d = 0 be such that there exists a vector

r € C with £ + ad € C for all « > 0. We fix

x € C and a > 0, and we show that x + ad € C.

By scaling d, it is enough to show that z +d € C.
For k=1,2,..., let

2k — X
a—otkd, o= T
2k — |
We have ¢
di, |z — || d x—x |z — x| T —x
— , : — 0,
lall lze — [l ldll * llze — [l [z — | Iz — ]

so dp — d and x + dr — x + d. Use the convexity
and closedness of (' to conclude that x +d € C.



LINEALITY SPACE

e The lineality space of a convex set C', denoted by
L¢, is the subspace of vectors d such that d € R¢
and —d € R¢:

Lc = RcN(—Re)

e If d € Lc, the entire line defined by d is con-
tained in C, starting at any point of C.

e Decomposition of a Convex Set: Let C be a
nonempty convex subset of . Then,

C:LC—I—(CﬂLé).

e Allows us to prove properties of C' on C'N Lé:
and extend them to C.

e True also if L¢ is replaced by a subspace S C
Lc.




LECTURE 5

LECTURE OUTLINE

e Directions of recession of convex functions
e Local and global minima

e [Existence of optimal solutions

Reading: Sections 1.4.1, 3.1, 3.2



DIRECTIONS OF RECESSION OF A FN

e We aim to characterize directions of monotonic
decrease of convex functions.
e Some basic geometric observations:

— The “horizontal directions” in the recession
cone of the epigraph of a convex function f
are directions along which the level sets are
unbounded.

— Along these directions the level sets {:13 |

f(z) < ~} are unbounded and f is mono-
tonically nondecreasing.

e These are the directions of recession of f.

A
epilf)
G
C 1y

\M) -
0 Recession

/ @: X1 (x) =1}




RECESSION CONE OF LEVEL SETS

e Proposition: Let f : R" — (—o0, 00] be a closed
proper convex function and consider the level sets
V, ={x| f(z) <7}, where v is a scalar. Then:

(a) All the nonempty level sets V have the same
recesslon cone:

Ry, ={d| (d,0) € Repis) }

(b) If one nonempty level set V., is compact, then
all level sets are compact.

Proof: (a) Just translate to math the fact that

Ry, = the “horizontal” directions of recession of epi( f)

(b) Follows from (a).



RECESSION CONE OF A CONVEX FUNCTION

e For a closed proper convex function f : R® —
(—o0, 00], the (common) recession cone of the nonempty
level sets Vo, = {z | f(z) <7}, v € R, is the re-
cesston cone of f, and is denoted by Ry.

Recession Cone Ry

|

Level Sets of f

e Terminology:
— d € Ry: a direction of recession of f.
— Ly = RsN(—Ry): the lineality space of f.
— d € Ly: a direction of constancy ot f.

e Example: For the pos. semidefinite quadratic
f(x) =2'Qxr 4+ a’x + b,
the recession cone and constancy space are

Ry={d|Qd=0,ad<0}, Ly ={d|Qd=0, a'd=0}



RECESSION FUNCTION

e Function r¢ : R" +— (—o00, 0] whose epigraph
18 Repicp) 18 the recession function of f.

e (haracterizes the recession cone:
Ry ={d|re(d) <0}, Ly={d|rs(d)=rp(—d)=0}

since Ry = {(d,0) € Repi(s) }-
e (Can be shown that

r(d) = sup fle+ad) = flz) _ . flz+ad) - f(z)

a>0 (8% o— 00 (874

e Thus r¢(d) is the “asymptotic slope” of f in the
direction d. In fact,

re(d) = lim Vf(z+ad)d, VYaz,deRn

a— 00

if f is differentiable.

e (alculus of recession functions:

Tsup,c; fi (d) = SUp Ty (d)
el



DESCENT BEHAVIOR OF A CONVEX FN

A f(z+ ad)

(@)

©)

Ry

(e)

Y

' f(z+ od)

(b)

(d)

®

e y is a direction of recession in (a)-(d).

e This behavior is independent of the starting
point x, as long as x € dom( f).



LOCAL AND GLOBAL MINIMA

e Consider minimizing f : R” +— (—o00, 00] over a
set X C R

e 1 is feasible if z € X Ndom(f)

e x* is a (global) minimum of f over X if x* is

feasible and f(x*) = infex f(x)

e z* is a local minimum of f over X if x* is a
minimum of f over a set X N{x | ||z — x*| < €}

Proposition: If X is convex and f is convex,
then:

(a) A local minimum of f over X is also a global
minimum of f over X.

(b) If f is strictly convex, then there exists at
most one global minimum of f over X.




EXISTENCE OF OPTIMAL SOLUTIONS

e The set of minima of a proper f : R* —

(—o0, 00] is the intersection of its nonempty level
sets.

e The set of minima of f is nonempty and com-
pact if the level sets of f are compact.

e (An Extension of the) Weierstrass’ Theo-
rem: The set of minima of f over X is nonempty
and compact if X is closed, f is lower semicontin-

uous over X, and one of the following conditions
holds:

(1) X is bounded.

(2) Some set {z € X | f(x) <~} is nonempty
and bounded.

(3) For every sequence {xr} C X s. t. ||zg]| —
00, we have limy_, o f(zr) = oo. (Coercivity

property).

Proof: In all cases the level sets of f NX are
compact. Q.E.D.



EXISTENCE OF SOLUTIONS - CONVEX CASE

e Weierstrass’ Theorem specialized to con-
vex functions: Let X be a closed convex subset
of 7, and let f : R™ — (—o0, 0] be closed con-
vex with X Ndom(f) # . The set of minima of
f over X is nonempty and compact if and only
if X and f have no common nonzero direction of
recession.

Proof: Let f* =inf,cx f(x) and note that f* <

oo since X Ndom(f) # . Let {7x} be a scalar
sequence with v, | f*, and consider the sets

Vi = {o | f(z) < w}.
Then the set of minima of f over X is
X* = ﬂzozl(X M Vk)

The sets X NV}, are nonempty and have Rx N Ry
as their common recession cone, which is also the
recession cone of X*, when X* = (J. It follows X*
is nonempty and compact if and only it RxNR¢ =

{0}. Q.E.D.



EXISTENCE OF SOLUTION, SUM OF FNS

o Let fi : " +— (—00,0¢0],i=1,...,m, be closed
proper convex functions such that the function

f=fit o fm

is proper. Assume that the recession function of
a single function f; satisfies r¢,(d) = oo for all
d = 0. Then the set of minima of f is nonempty
and compact.

e Proof: The set of minima of f is nonempty and
compact if and only if Ry = {0}, which is true if
and only if r¢(d) > 0 for all d =0. Q.E.D.

e Example of application: If one of the f; is
positive definite quadratic, the set of minima of
the sum f is nonempty and compact.

e Also f has a unique minimum because the pos-
itive definite quadratic is strictly convex, which
makes f strictly convex.



PROJECTION THEOREM

e Let C be a nonempty closed convex set in 7.

(a) For every z € R, there exists a unique min-

imum of

flz) =z —z||?
over all x € C (called the projection of z on
).

(b) x* is the projection of z if and only if
(x —ax*)(z —x*) <0, Vezel

Proof: (a) f is strictly convex and has compact
level sets.

(b) This is just the necessary and sufficient opti-
mality condition

Vf(x*)(x—ax*) >0, Vel



LECTURE 6

LECTURE OUTLINE

e Nonemptiness of closed set intersections
e [Existence of optimal solutions
e Linear and quadratic programming

e Preservation of closure under linear transforma-
tion

Reading: Sections 1.4.2, 1.4.3



ROLE OF CLOSED SET INTERSECTIONS I

e A fundamental question: Given a sequence
of nonempty closed sets {Cy} in R with Cy41 C
C' for all k, when is N2 C) nonempty?

e Set intersection theorems are significant in at
least three major contexts, which we will discuss
in what follows:

1. Does a function f : " — (—o0,00] attain a
minimum over a set X7 This is true if and only if

Intersection of nonempty {:13 c X | flx) < ’Yk}

1s nonempty.

Level Sets of f

Optimal
Solution



ROLE OF CLOSED SET INTERSECTIONS II

2. If C is closed and A is a matrix, is A C closed?
Special case:

— If C1 and Cs are closed, is C7 + (9 closed?

A N,
\ [
T Ok C
|
|
|
: —
1
y+ ?Jl.c+1 .yk <
. AC

3. If F(x,2) is closed, is f(z) = inf, F(x,2)
closed? (Critical question in duality theory.) Can
be addressed by using the relation

P(epi(F)) Cepi(f) C Cl(P(epi(F))>

where P(-) is projection on the space of (z,w).



ASYMPTOTIC SEQUENCES

e Given nested sequence {C}} of closed convex
sets, {xx} is an asymptotic sequence if

xr € Ch, xr #+ 0, k=0,1,...

X d

k|l — o0 —
B (£ 7% ]

where d is a nonzero common direction of recession
of the sets (.

e As a special case we define asymptotic sequence
of a closed convex set C' (use C = C).

e FEvery unbounded {xi} with z; € C% has an
asymptotic subsequence.

o {x} is called retractive if for some k, we have

xp—deCy, VYk>E.

X1

-— x5 <_Xf
-— X4 X5
X0 - 4
4

Asymptotic Sequence

0
—p d

/

Asymptotic Direction



RETRACTIVE SEQUENCES

e A nested sequence {Cy} of closed convex sets
is retractive if all its asymptotic sequences are re-
tractive.

A

Intersection N2 ,C A Intersection N%2oChk
S o

7z s

Kl T3

Iy

Co

Co

(a) Retractive Set Sequence (b) Nonretractive Set Sequence

e A closed halfspace (viewed as a sequence with
identical components) is retractive.

e Intersections and Cartesian products of retrac-
tive set sequences are retractive.

e A polyhedral set is retractive. Also the vec-
tor sum of a convex compact set and a retractive
convex set is retractive.

e Nonpolyhedral cones and level sets of quadratic
functions need not be retractive.



SET INTERSECTION THEOREM 1

Proposition: If {C}} is retractive, then N2, C
1S nonempty.

e Key proof ideas:

(a) The intersection N2, C is empty iff the se-
quence {xx} of minimum norm vectors of C},
is unbounded (so a subsequence is asymp-
totic).

(b) An asymptotic sequence {xy} of minimum
norm vectors cannot be retractive, because
such a sequence eventually gets closer to 0
when shifted opposite to the asymptotic di-

rection.

X1

< X3
X2 4_.
-— X4 X5
X0 ~— <
44—
Asymptotic Sequence
0
—P d

/

Asymptotic Direction



SET INTERSECTION THEOREM I1

Proposition: Let {C}} be a nested sequence of
nonempty closed convex sets, and X be a retrac-

tive set such that all the sets C'r, = X N C} are
nonempty. Assume that

RxNRCL,
where
R =N Re, L=n,Lc,
Then {C'} is retractive and N2, C'y; is nonempty.

e Special cases:
— X =R", R=L (“cylindrical” sets C)

— RxNR = {0} (no nonzero common recession
direction of X and NxCl)

Proof: The set of common directions of recession
of Cr is Rx N R. For any asymptotic sequence
{xr} corresponding to d € Rx N R:

(1) zp, —d € Cy (because d € L)
(2) zp —d € X (because X is retractive)

So {C}} is retractive.



NEED TO ASSUME THAT X IS RETRACTIVE

K!_> | Kl_> |

| | | |

B ] \ i g I \ P
Crk+1 Cr Crii €1

Consider N2, Ck, with Cp=XNCy

e The condition Rx N R C L holds
e In the figure on the left, X is polyhedral.

e In the figure on the right, X is nonpolyhedral
and nonretrative, and

ﬂgozo(]k =



LINEAR AND QUADRATIC PROGRAMMING

e Theorem: Let
f(z) = 2'Qx + 'z, X:{x\a;x—kbj <0, j5=1,...,r}

where () is symmetric positive semidefinite. If the
minimal value of f over X is finite, there exists a
minimum of f over X.

Proof: (Outline) Write
Set of Minima = N2 (XN {z | 2/Qz+c'z < i })

with
e L fr = inf f(2).

Verify the condition Rx N R C L of the preceding
set intersection theorem, where R and L are the

sets of common recession and lineality directions
of the sets

{x | 2'Qx + x < i}

Q.E.D.



CLOSURE UNDER LINEAR TRANSFORMATION

e Let C be a nonempty closed convex, and let A
be a matrix with nullspace N(A).

(a) AC is closed if Re N N(A) C Lc¢.

(b) A(X NC) is closed if X is a retractive set
and

Proof: (Outline) Let {yx} C AC with yr — .
We prove N2 ,Cr # O, where C, = C'N Ny, and

Ni={z | Az e Wi}, Wi ={z||z=yl < llye—yll}

A N,
\ |
|
|
|
: —~—
sl
ZI+ y:c+1 .gk -
. AC

e Special Case: AX is closed if X is polyhedral.



NEED TO ASSUME THAT X IS RETRACTIVE

|
|
|
|
|
|
;i/// J
|
|
|
|
|
|
|
|
|

|
|

AXNC) AXNC)

Consider closedness of A(X NC)

e In both examples the condition
RxﬂRcﬂN(A) C Lc¢

is satisfied.

e However, in the example on the right, X is not
retractive, and the set A(X N C) is not closed.



CLOSEDNESS OF VECTOR SUMS

o Let ('1,...,C, benonempty closed convex sub-
sets of }™ such that the equality di+---+dp, =0
for some vectors d; € Rc, implies that d; = 0 for
all2=1,....,m. Then C; +---+ (), is a closed
set.

e Special Case: If (1 and —(C's are closed convex
sets, then C7 — CY is closed if R, N Re, = {0}.

Proof: The Cartesian product C = C7 x--- x Cy,
is closed convex, and its recession cone is Rc =

Rc, X -+ X Rc, . Let A be defined by
Alx1,.. . Tm) =21+ -+ Tm

Then
AC=C1+ -+ Chp,

and
N(A)={(d,...,dw) | d1 4+ + dm =0}

ReNN(A) = {(d1,...,dm) | di+ - +dm =0, d; € Rg,, Vi}

By the given condition, Re "N(A) = {0},s0 AC
is closed. Q.E.D.



LECTURE 7

LECTURE OUTLINE

e Partial Minimization
e Hyperplane separation
e Proper separation

e Nonvertical hyperplanes

Reading: Sections 3.3, 1.5



PARTIAL MINIMIZATION

o Let F: Rnt™ — (—00,00] be a closed proper
convex function, and consider

f(x) = inf F(x,z)

zeRrm

e 1st fact: If F'is convex, then f is also convex.

e 2nd fact:
P(epi(F)) Cepi(f) C CI(P(epi(F)))7

where P(-) denotes projection on the space of (z, w),
ie., for any subset S of Rntm+1 P(S) = {(z,w) |

(z,z,w) € S}.
e Thus, if F'is closed and there is structure guar-

anteeing that the projection preserves closedness,
then f is closed.

e ... but convexity and closedness of F' does not
guarantee closedness of f.



PARTIAL MINIMIZATION: VISUALIZATION

e Connection of preservation of closedness under
partial minimization and attainment of infimum
over z for fixed x.

epi(f)

f(z) = ir;xf F(:lt,’/z') W — — —2 f(z) = il__lf F(z, z) e = — —z

” ¥
/T /T2
»’ »
T z

e Counterexample: Let

Fla,2) = { €V ifa>0 220
00 otherwise.

e [ convex and closed, but

0 ifz>0,
f(x)=inf F(z,2)=q¢1 ifx=0,
EX oo if x <0,

is not closed.



PARTIAL MINIMIZATION THEOREM

o Let F: Rnt™ — (—00,00] be a closed proper
convex function, and consider f(x) = inf,cpm F(z, 2).

e LEvery set intersection theorem yields a closed-
ness result. The simplest case is the following:

e Preservation of Closedness Under Com-
pactness: If there exist x € R", v € R such that
the set

{Z|F(:U,z) §7}

is nonempty and compact, then f is convex, closed,
and proper. Also, for each z € dom( f), the set of
minima of F(x,-) is nonempty and compact.

epi(f)




HYPERPLANES

Positive Halfspace
{z | alx = b}

Hyperplane
{v e =b =1z | e x0T}

Negative Halfspace
{2 | o’z = b}

e A hyperplane is a set of the form {x | a’x = b},
where a is nonzero vector in ™ and b is a scalar.

e We say that two sets C; and (2 are separated
by a hyperplane H = {x | a’x = b} if each lies in a
different closed halfspace associated with H, i.e.,

/aeither a’'xy <b<axs, Va, € Cr, Vas € Co,
or a'xes <b<ax, Va1 €(Cq, Vas e (s
e If x belongs to the closure of a set C', a hyper-

plane that separates C' and the singleton set {x}
is said be supporting C' at x.



VISUALIZATION

e Separating and supporting hyperplanes:

(a) (b)

e A separating {x | a’x = b} that is disjoint from
C1 and O} is called strictly separating:

a/:v1<b<a’:1:2, VCU1€C1, YV 29 € (9




SUPPORTING HYPERPLANE THEOREM

e Let C be convex and let x be a vector that is
not an interior point of C. Then, there exists a
hyperplane that passes through xr and contains C
in one of its closed halfspaces.

Proof: Take a sequence {x} that does not be-
long to cl(C) and converges to x. Let Zj be the
projection of xx on cl(C). We have for all = €

cl(C)
a,x > a, T, VezecC), VE=0,1,...,

where ar = (T — x1)/||Tkx — xk||- Let a be a limit
point of {ax}, and take limit as £k — co. Q.E.D.



SEPARATING HYPERPLANE THEOREM

e Let (1 and Cs be two nonempty convex subsets
of k. If C'; and Cs are disjoint, there exists a
hyperplane that separates them, i.e., there exists
a vector a = 0 such that

a’r1 < a'xs, Va1 € C, Vs e (.

Proof: Consider the convex set
C1—Cz={$2—x1 ‘5131 c (1, x2 ECQ}

Since C'1 and (> are disjoint, the origin does not
belong to C1 — (2, so by the Supporting Hyper-
plane Theorem, there exists a vector a = 0 such
that

0 <ax, Vel —Co,

which is equivalent to the desired relation. Q.E.D.



STRICT SEPARATION THEOREM

e Strict Separation Theorem: Let C; and Cs
be two disjoint nonempty convex sets. If C7 is
closed, and (5 is compact, there exists a hyper-
plane that strictly separates them.

C1 C,

(a)

Proof: (Outline) Consider the set C; —C5. Since
C' is closed and (> is compact, C';1 — Cs is closed.
Since C1 NCe = J, 0 ¢ C; — Ca. Let x1 — x2
be the projection of 0 onto C; — (2. The strictly
separating hyperplane is constructed as in (b).

e Note: Any conditions that guarantee closed-
ness of C; — (2 guarantee existence of a strictly
separating hyperplane. However, there may exist
a strictly separating hyperplane without C; — Cs
being closed.



ADDITIONAL THEOREMS

¢ Fundamental Characterization: The clo-
sure of the convex hull of a set C C R™ is the
intersection of the closed halfspaces that contain
C'. (Proof uses the strict separation theorem.)

e We say that a hyperplane properly separates C'y
and C if it separates C'1 and Cs and does not fully
contain both C7 and Cs.

e Proper Separation Theorem: Let (7 and
C be two nonempty convex subsets of Jt». There
exists a hyperplane that properly separates C; and
Cs if and only if

I‘i(Cl) M I'i(CQ) = ()



PROPER POLYHEDRAL SEPARATION

e Recall that two convex sets C' and P such that
ri(C) Nri(P) = 0

can be properly separated, i.e., by a hyperplane
that does not contain both C' and P.

e If P is polyhedral and the slightly stronger con-
dition

ri(C)NP =0
holds, then the properly separating hyperplane

can be chosen so that it does not contain the non-
polyhedral set C' while it may contain P.

Separating Separating
Hyperplane Hyperplane
(a) (b)

On the left, the separating hyperplane can be cho-
sen so that it does not contain C. On the right
where P is not polyhedral, this is not possible.



NONVERTICAL HYPERPLANES

e A hyperplane in R*t! with normal (u, () is
nonvertical if = 0.

e It intersects the (n+1)st axis at £ = (u/8) utw,
where (u,w) is any vector on the hyperplane.

(1, 0)
—

/ Vertical
U W _—" Hyperplane

Nonvertical
\/Hyperplane
|
0 \\ "

=

@

e A nonvertical hyperplane that contains the epi-
graph of a function in its “upper” halfspace, pro-
vides lower bounds to the function values.

e The epigraph of a proper convex function does
not contain a vertical line, so it appears plausible
that it is contained in the “upper” halfspace of
some nonvertical hyperplane.



NONVERTICAL HYPERPLANE THEOREM

e Let C be a nonempty convex subset of 7+l
that contains no vertical lines. Then:

(a) C'is contained in a closed halfspace of a non-
vertical hyperplane, i.e., there exist u € R»,
g € R with 8 # 0, and v € R such that
w4 Bw > v for all (u,w) € C.

(b) If (u,w) ¢ cl(C'), there exists a nonvertical
hyperplane strictly separating (u,w) and C.

Proof: Note that cl(C') contains no vert. line [since
C' contains no vert. line, ri(C') contains no vert.
line, and ri(C) and cl(C) have the same recession
cone]. So we just consider the case: C' closed.

(a) C is the intersection of the closed halfspaces
containing C'. If all these corresponded to vertical
hyperplanes, C' would contain a vertical line.

(b) There is a hyperplane strictly separating (u, w)
and C'. If it is nonvertical, we are done, so assume
it is vertical. “Add” to this vertical hyperplane a
small e-multiple of a nonvertical hyperplane con-
taining C' in one of its halfspaces as per (a).



LECTURE 8

LECTURE OUTLINE

e Convex conjugate functions
e Conjugacy theorem
e Examples

e Support functions

Reading: Section 1.6



CONJUGATE CONVEX FUNCTIONS

e Consider a function f and its epigraph

Nonvertical hyperplanes supporting epi( f)

—  Crossing points of vertical axis

f*(y) = sup {z'y — f(x)}, y € Rn.

rERMT

e For any f : R" — |—00, 00], its conjugate convex
function is defined by

f*(y) = sup {2’y — f(x)}, yeR"

T ERMT



EXAMPLES

f*(y) = sup {a'y — f(z)}, y € Rn

rER"

A f(z)=az—p A{ﬁ ?iy;a
o ify#a

&
o
g
d
Q
\J
D
=V

Afz)=|x A 1
f(z) = || f*(y):{go Elzii}
\/ , ‘ g
A f(2) = (c/2)2? A 1+(y) = (1/20)y2

\/
<y




CONJUGATE OF CONJUGATE

e Irom the definition

f*(y) = sup {z'y — f(z)},  yeRn,

rER™

note that f* is convex and closed.

e Reason: epi(f*) is the intersection of the epigraphs
of the linear functions of y

'y — f(x)
as x ranges over R".
e (Consider the conjugate of the conjugate:
f*(x) = sup {y'z — f*(y)}, = €R"
yeR"

e f**is convex and closed.

e Important fact/Conjugacy theorem: If f
is closed proper convex, then f** = f.



CONJUGACY THEOREM - VISUALIZATION

f*(y) = sup {z'y — f(x)}, y € Rn

T ERMT

f**(x) = sup {y’aﬁ — f*(y)}, xr € Rkn

yeR”

e If f is closed convex proper, then f** = f.

/_— Slope =y

Hyperplane
H = {(z,w) |w-ay=—f*(y)}




CONJUGACY THEOREM

o Let f: R" — (—o00,00] be a function, let cl f be
its convex closure, let f* be its convex conjugate,
and consider the conjugate of f*,

[ (x) = sup {y'z — f*(y)}, xeRn

yeR”

(a) We have

flx) > f(x), Vazekn

(b) If f is convex, then properness of any one
of f, f*, and f** implies properness of the
other two.

(c) If f is closed proper and convex, then

f(z) = f**(x), Vo e R

(d) If cl f(x) > —oo for all z € R™, then

c f(z) = f*(x), VazeRr



PROOF OF CONJUGACY THEOREM (A), (C)

e (a) For all z,y, we have f*(y) > v’z — f(x),
implying that f(x) > sup, {y'z— f*(y)} = f**(z).

e (c) By contradiction. Assume there is (z,7) €
epi(f**) with (x,~) ¢ epi(f). There exists a non-
vertical hyperplane with normal (y, —1) that strictly
separates (x,7) and epi(f). (The vertical compo-
nent of the normal vector is normalized to -1.)

e C(Consider two parallel hyperplanes, translated
to pass through (:U,f(:l:)) and (:U,f**(:z;)). Their
vertical crossing points are 2’y — f(z) and 'y —
f**(x), and lie strictly above and below the cross-
ing point of the strictly sep. hyperplane. Hence

'y — f(z) > 2’y — f**(x)
which contradicts part (a). Q.E.D.

A

epi(f)

(ya _1)

epi(f**)
z'y — f(x)

a'y — f*(z) ——




A COUNTEREXAMPLE

e A counterexample (with closed convex but im-
proper f) showing the need to assume properness
in order for f = f**:

 Joo ifax >0,
f(x)_{ if 2 < 0.

— O

We have

But

so cl f = f*.



A FEW EXAMPLES

e [, and [, norm conjugacy, where 11) + é =1

] — ] —
f(z) = ZI%’IP, f*(y) = ZIyi\q
pizl qi:l

e (Conjugate of a strictly convex quadratic

1
f(x) = 2:1:’@:1: +a'z + 0,

F(w) = oy~ a)Q 1y —a) b

e (Conjugate of a function obtained by invertible
linear transformation/translation of a function p

f(z) = p(A(:E — c)) +a'z + b,

) =q((A)"Yy —a)) +y+d,

where ¢ is the conjugate of p and d = —(c’a + b).



SUPPORT FUNCTIONS

e (Conjugate of indicator function 0x of set X

ox(y) = Sup y'x
xZ

is called the support function of X.

e To determine ox(y) for a given vector y, we
project the set X on the line determined by y,
we find 2, the extreme point of projection in the
direction y, and we scale by setting

ox(y) = 1zl - lyl

\
3 \ —
|

e epi(ox) is a closed convex cone.

e The sets X, cl(X), conv(X), and cl(conv(X))
all have the same support function (by the conju-
gacy theorem).



SUPPORT FN OF A CONE - POLAR CONE

e The conjugate of the indicator function o¢ is
the support function, oc(y) = sup,cc y'z.

e If C is a cone,

© oo otherwise

i.e., o¢ is the indicator function dc+ of the cone
C={y|yxz<0, Vxel}

This is called the polar cone of C.

e By the Conjugacy Theorem the polar cone of C'*
is cl(conv(C')). This is the Polar Cone Theorem.

e Special case: If C' = Cone({a1, o ar}), then
Cx={z|adx<0,j=1,...,r}

e Farkas’ Lemma: (C*)* = C.

e True because C is a closed set [cone({a1, ..., ar})
is the image of the positive orthant {a | a > 0}
under the linear transformation that maps a to
> i—1 @ja;], and the image of any polyhedral set
under a linear transformation is a closed set.



LECTURE 9

LECTURE OUTLINE

e Min common/max crossing duality

e Weak duality

e Special Cases

e (Constrained optimization and minimax

e Strong duality

Reading: Sections 4.1, 4.2, 3.4



EXTENDING DUALITY CONCEPTS

e From dual descriptions of sets

e

A union of points An intersection of halfspaces

e To dual descriptions of functions (applying
set duality to epigraphs)

A (—y,1)

e We now go to dual descriptions of problems,
by applying conjugacy constructions to a simple
generic geometric optimization problem



MIN COMMON / MAX CROSSING PROBLEMS

e We introduce a pair of fundamental problems:
e Let M be a nonempty subset of R+l

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n +
1)st axis. Find one whose (n + 1)st compo-
nent 1s minimum.

(b) Max Crossing Point Problem: Consider non-
vertical hyperplanes that contain M in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-
muim.

| Min Common

w A Min Common I
Point w*

Point w*
/

Sy

— \
Sy ‘

Max Cr’ossings)(/

/ .
Point, ¢* Max Crossing

Point ¢*

(a) ()

w A

A
M
Min Common
Point w* e
Max Crossing M
Point ¢* '

0 )




MATHEMATICAL FORMULATIONS

e Optimal value of the min common prob-

lem:

w* = inf w
(0,w)eM

iDual function value ¢(u) = inf {w + W}
L, w)eEM

(v

Hyperplane H,, ¢ = {(71,, w) | w+ pu = f}

>

o] .

e Math formulation of the max crossing
problem: Focus on hyperplanes with normals
(4, 1) whose crossing point £ satisfies

£ <w+ pu, V (u,w) € M

Max crossing problem is to maximize & subject to
§ < inf(y wyer{w + p'u}, p € RN, or

maximize q(u) 2 inf {w+ pu}
(w,w)eM

subject to p € Rn.



GENERIC PROPERTIES - WEAK DUALITY

e Min common problem

inf w
(0,w)eM

e Max crossing problem

maximize q(u) = i%f M{w + p'u}
u,w)E

subject to p € Rn.

.
g

u

e Note that ¢ is concave and upper-semicontinuous
(inf of linear functions).

e Weak Duality: For all 4 € R~

— ] f / < : f — *
k) = Lyt wul < o o=

so maximizing over u € ", we obtain ¢* < w*.

e We say that strong duality holds if ¢g* = w*.



CONNECTION TO CONJUGACY

e An important special case:
M = epi(p)
where p : " — [—00,00]. Then w* = p(0), and

qg(p) = inf wHp'ut = inf w+p'ut,
(1) (u,w)Eepi(p){ Huy {(u,w)lp(U)Sw}{ piy

and finally

q* = sup q(p) = sup {0-(—p)—p*(—p)} = p*(0)
peFR™ peR™



GENERAL OPTIMIZATION DUALITY

e Consider minimizing a function f : " — [—00, o0].
o Let F': R+ — |—00, 00] be a function with

f(x) = F(x,0), Vel
e Consider the perturbation function

— inf F
p(u) = inf F(z,u)

and the MC/MC framework with M = epi(p)

e The min common value w* is
a— = inf F = inf
we=p(0) = inf F(z,0)= inf f(2
e The dual function is
= inf w)+u'up = inf Flx,uw)+u'u
o) = inf {pu)tpry = inf {F(eu)u)

so q(pu) = —F*(0, —pu), where F'* is the conjugate
of F', viewed as a function of (z,u)

e Since
* — gqu :—ian*O,— :—ian*O, 9
q M@ng) Jnf (0, —p) Jnf (0, u)
we have

R S - S



CONSTRAINED OPTIMIZATION

e Minimize f : ™ — R over the set
C={zeX|g(x)<0},
where X C ®* and ¢ : k" — R".
e Introduce a “perturbed constraint set”
Cy={zecX|g(x)<u}, u € R,

and the function

F(x,u) = {f(x) it x € Cly,

00 otherwise,

which satisfies F'(x,0) = f(z) for all x € C.

e Consider perturbation function

— inf F inf
p(v) = inf F(z,u)= e Suf(év),

and the MC/MC framework with M = epi(p).



CONSTR. OPT. - PRIMAL AND DUAL FNS

e Perturbation function (or primal function)

= inf F inf
p(u) = inf F(z,u)= e Suf(a:),
p(u) |
M epi(p
f(z) |z € X}

w* = p(0) ﬂ
q*

e Introduce L(z,u) = f(x) + p/g(x). Then

o) = inf {p(a) + ')
ueR"

— inf {f(x) 4 ,Lblu}

ueR”, z€X, g(z)<u

_ {infwex L(x,p) if p >0,
— 00 otherwise.



LINEAR PROGRAMMING DUALITY

e Consider the linear program

minimize c'x

subject to a;-ac >b;, j=1,...,rm

where c € *, a;j € **, and b; e R, j=1,...,7.

e For 11 > 0, the dual function has the form

inf L(x,u)

q() inf

( )

— xienygn s+ by —alz) o

\ ']:1

— { b/'u' lf Z;:l a]:uj —= G,

—o0 otherwise

/

e Thus the dual problem is

maximize b0'u
.
subject to ajp; =c, p=>0.
j=1



MINIMAX PROBLEMS

Given ¢ : X X Z — R, where X C R, Z C ™

consider
minimize sup ¢(x, 2)
A=V

subject to x € X
or

maximize inf ¢(x, z)
zeX

subject to z € Z.

e Some important contexts:
— Constrained optimization duality theory

— Zero sum game theory

e We always have

sup inf ¢(x,z) < inf sup ¢(x, 2z
sup inf (%, 2) Jnf sup (%, 2)

e Key question: When does equality hold?



CONSTRAINED OPTIMIZATION DUALITY

e For the problem

minimize f(x)
subject to x € X, g(x) <0

introduce the Lagrangian function
Lz, p) = f(z) + p'g(z)

e Primal problem (equivalent to the original)

[ f(z) if g(z) <0,
min sup L(x, u) =
mig sup (z, ) = <

e otherwise,

e Dual problem

inf L
el S

e Key duality question: Is it true that

?
inf sup L(x, ) =w* ¢* =sup inf L(x,
nf, sup (, 1) _ @7 =sup il (z, )



ZERO SUM GAMES

e Two players: 1st chooses i € {1,...,n}, 2nd
chooses j € {1,...,m}.

e If 7 and j are selected, the 1st player gives a;;
to the 2nd.

e Mixed strategies are allowed: The two players
select probability distributions

= (T1,...,%Tn), 2= (21,...,2m)

over their possible choices.

e Probability of (i,7) is x;z;, so the expected
amount to be paid by the 1st player

v/ Az = g Qi Ti%j
]

where A is the n X m matrix with elements a;;.

e Fach player optimizes his choice against the

worst possible selection by the other player. So
— 1st player minimizes max, x’ Az

— 2nd player maximizes min, 2’/ Az



SADDLE POINTS

Definition: (z*,2*) is called a saddle point of ¢
if
olx*, z) < p(a*, z*) < ¢z, 2%), Vee X, VzeZ

Proposition: (z*, z*) is a saddle point if and only
if the minimax equality holds and

x™ € arg min sup ¢(z,2), z° € argmax inf ¢(x,z) (*)
r€X ez z€Z xeX

Proof: If (z*,2*) is a saddle point, then

inf sup ¢(z,z) < sup ¢(z”,2) = ¢(a", 27)

reX ez ze€Z
= inf ¢(z,2z") < sup inf ¢(x, 2)

By the minimax inequality, the above holds as an
equality throughout, so the minimax equality and
Eq. (*) hold.

Conversely, if Eq. (*) holds, then

sup inf ¢(z,2) = inf ¢(z,2*) < $(z*, ="
zezxeX reX

< sup ¢(z*,2) = inf sup ¢(z, 2)
z€EZ zeX ez

Using the minimax equ., (x*, z*) is a saddle point.



VISUALIZATION

The curve of maxima f(x,Z(x)) lies above the
curve of minima f(z(z), z), where

Z(x) = arg max f(zx, 2), z(z) = arg mgn f(z, 2)

Saddle points correspond to points where these
two curves meet.



MINIMAX MC/MC FRAMEWORK

e Introduce perturbation function p : ™ —
[_OanO]

p(u) = inf sup{d(z,z) — vz}, u € fm
T€X 27

e Apply the MC/MC framework with M = epi(p)

e Introduce élf, the concave closure of f

e We have

sup ¢(z,z) = sup (clé)(z, ),
z€Z zeR™

SO

w* = p(0) = inf sup (cl¢)(z, 2).
zEX eRpm

e The dual function can be shown to be

q(n) = inf (c1§)(z,p), ¥ p€Rm

so if ¢(x,-) is concave and closed,

w* = inf sup ¢(x, z), g* = sup inf ¢(x, 2
r€X eRm (:2) ceRm X (:2)



PROOF OF FORM OF DUAL FUNCTION
o Write p(u) = inf__ ps(u), where

po(u) = Sup{qb(x, z) — u’z}, x e X,
A=VA

and note that

f T — x — —Pz\—
nf {pa(u)tu'p} = sup (v (=) —pz(u) } = —po(—p)
Except for a sign change, ps is the conjugate of

(—¢)(x, ) |assuming (—cl ¢)(z,-) is proper], so

Pa(—pt) = —(cld)(z, p).

Hence, for all u € R,

o) = inf {p(u) + u'n}
ueR™

= inf inf {px + u ,u}
ueR™ xeX

= inf inf {px +u,u}
zeX ueR™

~inf { - pi(—p)}
reX

— inf (L) (z, )
reX



LECTURE 10

LECTURE OUTLINE

e Min Common / Max Crossing duality theorems
e Strong duality conditions
e Existence of dual optimal solutions

e Nonlinear Farkas’ lemma

Reading: Sections 4.3, 4.4, 5.1

| Min Common

Point w*
7

w A Min Common
Point w*

Sy

Max Cr’ossingg)(/ -

//
. o Max Crossing
Ko X Point g* \

(a) ()

A
. M
Min Common
Point w* e
Max Crossing M
Point g¢*

0 )




DUALITY THEOREMS

e Assume that w* < oo and that the set

M = {(u,w) | there exists w with w < w and (u,w) € M}

1S convex.

¢ Min Common/Max Crossing Theorem I:

We have ¢* = w* if and only if for every sequence
{(uk, wk)} C M with u; — 0, there holds

w* < lim inf wy.
k— o0

M

w* = q* 4" o(upi1, wyi1) w*
O(Uk,UJk)

¢<

0 {0 0 U

{(uk,wk)} C M, up — 0, w* < likminfwk {(uk,wk)} C M, ur — 0, w* > liminf wy

k—oo

e Corollary: If M = epi(p) where p is closed
proper convex and p(0) < oo, then ¢* = w*.)



DUALITY THEOREMS (CONTINUED)

¢ Min Common/Max Crossing Theorem II:
Assume in addition that —oo < w* and that

D = {u | there exists w € R with (u,w) € M}

contains the origin in its relative interior. Then
qg* = w* and there exists yu such that q(u) = g*.

A

Sy

e Furthermore, the set {u | ¢(p) = ¢*} is nonempty
and compact if and only if D contains the origin
in its interior.

¢ Min Common/Max Crossing Theorem
I1I: Involves polyhedral assumptions, and will be
developed later.



PROOF OF THEOREM 1

e Assume that ¢* = w*. Let {(uk,wk)} C M be
such that ug — 0. Then,

q(p) = : ir;f M{w+,u’u} < wgp+pug, Vk, VupeR?
u,w)E

Taking the limit as £k — oo, we obtain q(u) <
liminfy, .. wy, for all © € R, implying that

w* = q* = sup q(p) < liminf wy
pER™ k— o0

Conversely, assume that for every sequence
{(uk,wk)} C M with up — 0, there holds w* <
liminfr oo wg. If w* = —o0, then ¢* = —o0, by
weak duality, so assume that —oo < w*. Steps:

e Step 1: (0,w* —¢) & cl(M) for any € > 0.

O(Uk+1, ’wk+1)

o o olur, W)

(Ukt1, Wrt1)




PROOF OF THEOREM I (CONTINUED)

e Step 2: M does not contain any vertical lines.
If this were not so, (0, —1) would be a direction
of recession of cl(M). Because (0,w*) € cl(M),
the entire halfline {(0,w* —¢€) | € > 0} belongs to

cl(M), contradicting Step 1.

e Step 3: For any € > 0, since (0, w*—e¢) & cl(M),
there exists a nonvertical hyperplane strictly sepa-
rating (0, w* —¢€) and M. This hyperplane crosses
the (n + 1)st axis at a vector (0,&) with w* —e <
¢ < w*, so w* —e < g < w*. Since € can be
arbitrarily small, it follows that ¢* = w*.

S

(1, 1)

_d
U

Strictly Separating
Hyperplane




PROOF OF THEOREM 11

e Note that (0, w*) is not a relative interior point
of M. Therefore, by the Proper Separation The-
orem, there is a hyperplane that passes through
(0, w*), contains M in one of its closed halfspaces,
but does not fully contain M, i.e., for some (u, 3) =
(0,0)

Bw* < p'u + Pw, V (u,w) € M,

Pw* < sup {p'u+ Pw}
(w,w)eM

Will show that the hyperplane is nonvertical.

e Since for any (u,w) € M, the set M contains the
halfline {(u,w) | w < w}, it follows that 3 > 0. If
B =0, then 0 < p/u for all uw € D. Since 0 € ri(D)
by assumption, we must have p/u = 0 for allu € D
a contradiction. Therefore, 3 > 0, and we can
assume that 8 = 1. It follows that

w* < inf {pu+twh=q(p) <g¢*
(w,w)eM

Since the inequality ¢* < w* holds always, we
must have q(u) = ¢* = w*.



NONLINEAR FARKAS’ LEMMA

o let X CHR" f:X+— R and g; : X — R,
7 =1,...,r, be convex. Assume that

f(x) >0, Ve X with g(x) <0
Let

Q*={p|lpn>0,flx)+pwg(x) >0,VreX}

Then Q* is nonempty and compact if and only if
there exists a vector x € X such that g;(z) < 0
forall g =1,...,r.

A A A
{9@)f(@)) [z e X} {(9()|f(2) | = € X} {(g(@)|f(@)) |z € X}

0} of

(1, 1) (1, 1)

(a) (b) (©)

e The lemma asserts the existence of a nonverti-
cal hyperplane in R7+1 with normal (u, 1), that
passes through the origin and contains the set

{(9(2), f(2)) |z € X}

in its positive halfspace.



PROOF OF NONLINEAR FARKAS’ LEMMA

e Apply MC/MC to

M = {(u,w) | there is x € X s. t. g(x) < u, f(x) < w}

M = {(u,w) | there exists z € X
such that g(z) < u, f(z) < w}

5
\/m, y D

e M is equal to M and is formed as the union of
positive orthants translated to points (g(z), f(z)),
x e X.

e The convexity of X, f, and g; implies convexity
of M.

e MC/MC Theorem II applies: we have
D = {u | there exists w € R with (u,w) € M}

and 0 € int(D), because ((g9(z), f(x)) € M.



LECTURE 11
LECTURE OUTLINE

e Min Common/Max Crossing Th. III
e Nonlinear Farkas Lemma/Linear Constraints

e Linear Programming Duality

Reading: Sections 4.5, 5.1-5.2

Recall the MC/MC Theorem II: If —co < w*
and

0 € D = {u | there exists w € R with (u,w) € M}

then ¢* = w* and there exists p such that q(u) =

\/




MC/MC TH. III - POLYHEDRAL

e C(Consider the MC/MC problems, and assume
that —oo < w* and:

(1) M is a “horizontal translation” of M by —P,
M =M — {(u,0) | u € P},
where P: polyhedral and M: convex.

w j w | @ )

M — {(u,0) | u € P}

=Y

=Y
S
=

0}

(2) We have ri(D) N P # @, where
D= {u | there exists w € R with (u,w) € M}

Then ¢* = w*, there is a max crossing solution,

and all max crossing solutions p satisfy p'd < 0
for all d € Rp.

e Comparison with Th. II: Since D = D — P,
the condition 0 € ri(D) of Theorem II is

~

ri(D) Nri(P) # 0



PROOF OF MC/MC TH. III

e Consider the disjoint convex sets C1 = {(u,v) |
v > w for some (u,w) € M} and Co = {(u,w*) |
u € P} [u € P and (u,w) e M with w* > w
contradicts the definition of w*|

e Since (> is polyhedral, there exists a separat-
ing hyperplane not containing C1, i.e., a (u,3) =
(0,0) such that

Bw*+p'z<pv+uyz, V(r,v)elCy, VzePrP

inf {fv+pz} < sup {Bv+pz}
(z,v)€C1 (z,v)eCy
Since (0, 1) is a direction of recession of C'1, we see
that 8 > 0. Because of the relative interior point
assumption, 8 = 0, so we may assume that 5 = 1.



PROOF (CONTINUED)

e Hence,

w* 4+ p'z < inf {v+ p'ul, VzeP,
(u,v)eCy

so that
w* < inf v+ u(u—z
- (u,v)ECl,zEP{ K ( )}

= inf  {v+p'u}
(u,v)EM—P

= inf {v+ p'u}
(u,v)eEM

= q(p)

Using ¢* < w* (weak duality), we have q(u) =
q* — w*.

Prootf that all max crossing solutions p sat-
isfy u'd < 0 for all d € Rp: follows from

— f _i_ / —
q(1) (uyv)égl’zép{v W(u—2)}

so that q(u) = —o0 if 'd > 0. Q.E.D.

e Geometrical intuition: every (0, —d) with d €
Rp, is direction of recession of M.



MC/MC TH. III - A SPECIAL CASE

e Consider the MC/MC framework, and assume:

(1) For a convex function f : ®™ — (—o0, 00|,
an r X m matrix A, and a vector b € R":

M = {(u,w) | for some (z,w) € epi(f), Az —b < u}
so M = M + Positive Orthant, where

M = {(Az —b,w) | (z,w) € epi(f)}

pw) =, inf /(@)

(1,1)

M = epi(p)

(2) There is an = € ri(dom(f)) s. t. Az —b < 0.
Then ¢* = w* and thereis a u > 0 with q(u) = g¢*.

e Also M = M = epi(p), where p(u) = inf 4, _p<y f(2).
e We have w* = p(0) = inf 4,_p<0 f(2).



NONL. FARKAS’ L. - POLYHEDRAL ASSUM.

e Let X C R be convex, and f: X — R and g, :
Rr— R, j=1,...,r, be linear so g(z) = Az — b
for some A and b. Assume that

f(x) >0, Ve X with Ar —b<0
Let
Q* = {,UJ >0, f(z)+p/' (Az—b) >0,V € X}.

Assume that there exists a vector x € ri(X) such
that Ax — b < 0. Then @* is nonempty.

Proof: As before, apply special case of MC/MC
Th. III of preceding slide, using the fact w* > 0,
implied by the assumption.

wh

M = {(u,w) | Az — b < u, for some (z,w) € epi(f)}
I —




(LINEAR) FARKAS’ LEMMA

e Let A be an m x n matrix and ¢ € ™. The
system Ay = ¢, y > 0 has a solution if and only if

Alz <0 — 'z < 0. (*)

e Alternative/Equivalent Statement: If P =
cone{ay,...,an}, whereas,...,ay are the columns

of A, then P = (P*)* (Polar Cone Theorem).

Proof: If y € R" is such that Ay = ¢, y > 0, then
y'A'x = x for all x € R™, which implies Eq. (*).

Conversely, apply the Nonlinear Farkas’ Lemma
with f(z) = —cz, g(z) = Az, and X = Rm™.
Condition (*) implies the existence of ;1 > 0 such
that

—clx+ WAz >0, Ve Rm,
or equivalently
(Ap—c)'z >0, VoekRm,

or Ay = c.



LINEAR PROGRAMMING DUALITY

e Consider the linear program

minimize c'x

subject to a;-ac >b;, j=1,...,rm

where c € ®*, a;j € **, and b; e RN, j=1,...,7.

e The dual problem is

maximize b’ u

subject to Zaj,uj =c, u=>0.
j=1

e Linear Programming Duality Theorem:
(a) If either f* or ¢* is finite, then f* = ¢* and

both the primal and the dual problem have
optimal solutions.

(b) If f* = —o0, then ¢* = —o0.

(c¢) If g* = oo, then f* = o0.
Proof: (b) and (c) follow from weak duality. For
part (a): If f* is finite, there is a primal optimal
solution x*, by existence of solutions of quadratic

programs. Use Farkas’ Lemma to construct a dual
feasible p* such that ¢/x* = b u* (next slide).



PROOF OF LP DUALITY (CONTINUED)

x*

al &2

c = pia1 + psa2

Feasible Set

Cone D (translated to x*)

e Let x* be a primal optimal solution, and let
J ={j|az* =b;}. Then, ¢’y > 0 for all y in the
cone of “feasible directions”

D={ylajy>0,VjeJ}

By Farkas’ Lemma, for some scalars pi 2> 0, ccan
be expressed as

c=) wiaj, u;=0,Vjed, pi=0,Yj¢J.

j=1
Taking inner product with z*, we obtain c/'z* =
b’ v, which in view of ¢* < f*, shows that ¢g* = f*
and that p* is optimal.



LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors (z*, u*) form a primal and dual
optimal solution pair if and only if x* is primal-
feasible, pu* is dual-feasible, and

s (b —alz*) =0, Vi=1,....,7. (%)

Proof: If x* is primal-feasible and p* is dual-
teasible, then

b u* = bjp; + | ¢ — ajp; | x*

=1 =1 ()

=cdx*+  pi(b; —alz¥)

So if Eq. (*) holds, we have b/ u* = ¢’x*, and weak
duality implies that x* is primal optimal and p*
is dual optimal.

Conversely, if (x*, u*) form a primal and dual
optimal solution pair, then x* is primal-feasible,
1* is dual-feasible, and by the duality theorem, we
have b'u* = c’z*. From Eq. (**), we obtain Eq.

(%)-



LECTURE 12

LECTURE OUTLINE

Convex Programming Duality

Optimality Conditions

Mixtures of Linear and Convex Constraints
Existence of Optimal Primal Solutions
Fenchel Duality

Conic Duality

Reading: Sections 5.3.1-5.3.6

Line of analysis so far:

Convex analysis (rel. int., dir. of recession, hy-

perplanes, conjugacy)

MC/MC
Nonlinear Farkas’ Lemma
Linear programming (duality, opt. conditions)

We now discuss convex programming, and its

many special cases (reliance on Nonlinear Farkas’
Lemma)



CONVEX PROGRAMMING

Consider the problem

minimize f(x)

subject to = € X, gj(z) <0, j=1,...,7,

where X C R is convex, and f : X — R and
gj :+ X — Jt are convex. Assume f*: finite.

e Recall the connection with the max crossing
problem in the MC/MC framework where M =
epi(p) with

plu) =  inf  f(z)

r€X, g(z)<u

e Consider the Lagrangian function

L(z,p) = f(z) + w'g(x),
the dual function

_ ) infpex L(z,pu) if p >0,
ar) { —0Q otherwise

and the dual problem of maximizing inf,cx L(x, i)
over u > 0.



STRONG DUALITY THEOREM

e Assume that f* is finite, and that one of the
following two conditions holds:

(1) There exists x € X such that g(x) < 0.

(2) The functions g;, 7 = 1,...,r, are affine, and
there exists x € ri(X) such that g(z) < 0.

Then ¢* = f* and the set of optimal solutions of
the dual problem is nonempty. Under condition
(1) this set is also compact.

e Proof: Replace f(x) by f(z) — f* so that
f(x) —f*>0forall z € X w/ g(x) < 0. Ap-
ply Nonlinear Farkas’ Lemma. Then, there exist
pi =0, s.t.

f*<fl@)+  pigi(w), VzeX
j=1

e It follows that

fr < inf {f@) g} < inf f(a) = /.

reX reX, g(x)<0

Thus equality holds throughout, and we have

( )
r

fr=inf ¢ flz)+ j:1u§gj(ﬂ?) e = q(1*)

\ /



QUADRATIC PROGRAMMING DUALITY

e Consider the quadratic program
minimize l2'Qx 4+ 'z

subject to Ax < b,

where () is positive definite.

e If f* is finite, then f* = ¢* and there exist
both primal and dual optimal solutions, since the
constraints are linear.

e (alculation of dual function:

a(p) = inf {30'Qu -+ '+ p(Az — b))}

The infimum is attained for x = —Q~1(c + A’u),
and, after substitution and calculation,

q(p) = = AQT A/ — ' (b+ AQ1e) — /@ e

e The dual problem, after a sign change, is
minimize u/'Pu+1t'p
subject to p > 0,

where P = AQ— 1A’ and t = b+ AQlc.



OPTIMALITY CONDITIONS

e We have g* = f*, and the vectors x* and u* are
optimal solutions of the primal and dual problems,
respectively, iftf x* is feasible, u* > 0, and

r* € argmin L(z, p*),  pjigi(z*) =0, Vj.

reX
(1)
Proof: If ¢g* = f*, and x*, u* are optimal, then

f*=q* =q(p*) = ch Lz, p*) < L(x*, u*)

~ f@) + Y 195(at) < ().

where the last inequality follows from p7 > 0 and
g;i(x*) < 0for all j. Hence equality holds through-
out above, and (1) holds.

Conversely, if z*, u* are feasible, and (1) holds,

q(p*) = nf Lz, p*) = L(z*, p*)

= f@) + Y 19:(at) = ().

so g* = f*, and x*, u* are optimal. Q.E.D.



QUADRATIC PROGRAMMING OPT. COND.

For the quadratic program
minimize z/Qx + c'x
subject to Ax < b,

where () is positive definite, (x*,u*) is a primal
and dual optimal solution pair if and only if:

e Primal and dual feasibility holds:

Ax* < b, pw* >0

e Lagrangian optimality holds [z* minimizes L(x, 1*)
over x € R7|. This yields

T* = _Q_1(6+A/,U*)

e Complementary slackness holds [(Ax* —b) u* =
0]. It can be written as

pi >0 = asx* =bj, Vji=1,...,r,

where a;- is the jth row of A, and b, is the jth
component of b.



LINEAR EQUALITY CONSTRAINTS

e The problem is

minimize f(x)
subject to z € X, g(x) <0, Ax =0,

where X is convex, g(x) = (g1(x), ... ,gr(x)),, f:
X—NRandg;: X — R, j=1,...,r, are convex.

e C(Convert the constraint Az = b to Az < b

and —Ax < —b, with corresponding dual variables
AT >0and A= > 0.

e The Lagrangian function is
flx) +p'g(x) + (AT = A7) (Az — D),

and by introducing a dual variable A = A+ — A—,
with no sign restriction, it can be written as

L(z,p, A) = f(z) + wg(z) + N(Az — b).
e The dual problem is

maximize q(u, ) = in)f{ L(x, p, A)
aS

subject to u >0, A € km,



DUALITY AND OPTIMALITY COND.

e Pure equality constraints:

(a) Assume that f*: finite and there exists x €
ri(X) such that Az = b. Then f* = ¢* and

there exists a dual optimal solution.

(b) f* = q*, and (z*, \*) are a primal and dual
optimal solution pair if and only if x* is fea-
sible, and

z* € argmin L(x, A\*)

Note: No complementary slackness for equality
constraints.

e Linear and nonlinear constraints:

(a) Assume f*: finite, that there exists x € X
such that Az = b and g(x) < 0, and that
there exists £ € ri(X) such that Az = b.
Then ¢* = f* and there exists a dual optimal
solution.

(b) f* = ¢*, and (z*,u*, \*) are a primal and
dual optimal solution pair if and only if z*
is feasible, u* > 0, and

z* € argmin L(z, p*, A*), pjg;(z*) =0, ¥



COUNTEREXAMPLE 1

e Strong Duality Counterexample: Consider

minimize f(z) = e~ V¥1%2
subject to x1 =0, re X ={{x|x>0}

Here f* =1 and f is convex (its Hessian is > 0 in
the interior of X). The dual function is

0 if A >0,
—o0 otherwise,

g(A) = inf {e= V@122 4 Az} = {

x>0

(when A > 0, the expression in braces is nonneg-
ative for x > 0 and can approach zero by taking
r1 — 0 and x122 — 00). Thus ¢* = 0.

e The relative interior assumption is violated.

e As predicted by the corresponding MC/MC
framework, the perturbation function

0 ifu>0,
p(u) = inf e VT1T2 = { 1 ifu=0,

r1=u, x>0 .
! = oo if u <0,

1s not lower semicontinuous at u = 0.



COUNTEREXAMPLE VISUALIZATION

0 ifu>0,
e~ VILIT2 — {1 if u=20,

oo ifu <0,

1
S 20 O €2
r1T = U

e Connection with counterexample for preserva-
tion of closedness under partial minimization.



COUNTEREXAMPLE 11

e Existence of Solutions Counterexample:
Let X =R, f(z) =z, g(x) = 2. Then x* = 0 is
the only feasible/optimal solution, and we have

1
q(p) = inf{x + pz?} = — V>0,

reER 4,&7

and ¢(u) = —oo for u < 0, so that ¢* = f* = 0.
However, there is no p* > 0 such that ¢(u*) =
q* = 0.

e The perturbation function is

p(u) = inf x:{_\/u if u >0,

r2<u o0 it u < 0.

p(u) 4

epi(p)




FENCHEL DUALITY FRAMEWORK

e Consider the problem

minimize fi(x) + f2(x)

subject to x € R,
where fi : R — (—o0, 00| and f2 : R — (—o00, o0
are closed proper convex functions.

e (Convert to the equivalent problem

minimize fi(x1) + f2(x2)
subject to x1 = x2, x1 € dom(f1), x2 € dom(f2)

e The dual function is

q(A) = inf (@) + fa(2) + N (2 — 21)

x1€dom(f1), xg€dom(f2)

= inf {fl(xl) — )\/561} -+ infn{fz(xg) —+ )\/ZCQ}

x1 ERT ro ER

e Dual problem: max) {—fr(\) — f3(—=\)} =
—minx{—¢(\)} or

minimize fF(\) 4+ f3(—A)
subject to A\ € R,

where f;" and fJ are the conjugates.



FENCHEL DUALITY THEOREM

e (Consider the Fenchel framework:

(a) If f* is finite and ri(dom(f1))Nri(dom(f2)) #
@, then f* = ¢* and there exists at least one
dual optimal solution.

(b) There holds f* = ¢*, and (z*, A\*) is a primal
and dual optimal solution pair if and only if

* . AN S * . !N\ *
x Eargxrgégqll{fl(az)—x)\ }, x Eargxrg;er#{fg(x)—l—x)\ }

Proof: For strong duality use the equality con-
strained problem

minimize f1 (5131) -+ f2 (CUQ)

subject to 1 =x2, x1 € dom(f1), T2 € dom(fg)

and the fact

ri(dom(fl) Xdom(fz)) = ri(dom(fl)) X (dom(fz))

to satisfy the relative interior condition.

For part (b), apply the optimality conditions
(primal and dual feasibility, and Lagrangian opti-
mality).



GEOMETRIC INTERPRETATION

¢ When dom(f1) = dom(fz) = R", and f; and
fo are differentiable, the optimality condition is
equivalent to

A= Vi) = =V fa(z¥)

® By reversing the roles of the (symmetric) primal
and dual fp@oblem@ow@ obtain alternative criteria
for strong duality: if ¢* is finite and ri(dom(f;)) N
ri(—dom(fg)) + (J, then f* = ¢* and there exists
at least one primal optimal solution.



CONIC PROBLEMS

e A conic problem is to minimize a convex func-
tion f : R? — (—o0, 0| subject to a cone con-
straint.
e The most useful /popular special cases:

— Linear-conic programming

— Second order cone programming

— Semidefinite programming

involve minimization of a linear function over the
intersection of an afline set and a cone.

e (Can be analyzed as a special case of Fenchel
duality.

e There are many interesting applications of conic
problems, including in discrete optimization.



CONIC DUALITY

e Consider minimizing f(x) over z € C, where f :
R" +— (—o00,00] is a closed proper convex function
and C is a closed convex cone in R™.

e We apply Fenchel duality with the definitions

fi(z) = f(z), fQ(x):{go ii;g’

The conjugates are

e - e , [0 ifxecC
fl(A)_xSEugI;n{Ax f(w)},fg(A)—Sngw—{oo it & O,

where C* ={\ | Vo <0,V z € C}.
e The dual problem is

minimize f*(\)

subject to A € C,
where f* is the conjugate of f and
C={\|Ne>0,VzeCl

C and —C are called the dual and polar cones.



CONIC DUALITY THEOREM

e Assume that the optimal value of the primal
conic problem is finite, and that

ri(dom(f)) Nri(C) # 0.

Then, there is no duality gap and the dual problem
has an optimal solution.

e Using the symmetry of the primal and dual
problems, we also obtain that there is no duality
gap and the primal problem has an optimal solu-
tion if the optimal value of the dual conic problem
is finite, and

ri(dom(f*)) N ri(C) # 0.



LINEAR CONIC PROGRAMMING

e Let f be linear over its domain, i.e.,

cdr iftxelX,
f(x)_{oo if v ¢ X,

where ¢ is a vector, and X = b+ .S is an affine set.

e Primal problem is

minimize c'x

subject to x —be S, z e (.

e We have
f*(A) = sup (A—c¢)x =sup(A—c)'(y + b)
r—beS yes
[ =0 ifA—ce St
o' ifA—c¢S?.

e Dual problem is equivalent to

minimize b’'\

subject to A\—ce 5L, NeC.

o If X Nri(C) = O, there is no duality gap and
there exists a dual optimal solution.



ANOTHER APPROACH TO DUALITY

e Consider the problem

minimize f(x)
subject to = € X, gij(z) <0, j=1,...,r

and perturbation fn p(u) = inf c x g(z)<u f(2)

e Recall the MC/MC framework with M = epi(p).
Assuming that p is convex and f* < oo, by 1st
MC/MC theorem, we have f* = ¢* if and only if
p is lower semicontinuous at O.

e Duality Theorem: Assume that X, f, and g;
are closed convex, and the feasible set is nonempty
and compact. Then f* = ¢* and the set of optimal
primal solutions is nonempty and compact.

Proof: Use partial minimization theory w/ the
function

’ 00 otherwise.

p is obtained by the partial minimization:

— inf F .
p(u) = inf F(z,u)

Under the given assumption, p is closed convex.



LECTURE 13

LECTURE OUTLINE

Subgradients

Fenchel inequality

Sensitivity in constrained optimization
Subdifferential calculus

Optimality conditions



SUBGRADIENTS

o Let f:R"— (—00,00]| be a convex function.
A vector g € R™ is a subgradient of f at a point
xr € dom(f) if

f(z) =2 f(x) + (2 —x)'g, VzeRn
e ¢ is a subgradient if and only if
f(z) — g = flx)—a'g, VzeR

so g is a subgradient at = if and only if the hyper-
plane in ®7+1 that has normal (—g, 1) and passes
through (:1:, f (az)) supports the epigraph of f.

f(2) A

¥
7‘”’ @)

0~
|

e The set of all subgradients at x is the subdiffer-
ential of f at x, denoted Of(x).



EXAMPLES OF SUBDIFFERENTIALS

e Some examples:

f(@) = |=|

A

By

0 @ 0

f(z) = max{0, (1/2)(z2 - 1)}
A 9f () &

10 1 T j 1 z

e If f is differentiable, then 0f(x) = {V f(x)}.
Proof: If g € 9f(x), then

flx+2) > f(x)+ gz, vV z e Rn.

Apply this with z = v(V f(z) —g), v € R, and use
1st order Taylor series expansion to obtain

YWWVF(z)—gl2>o(y), VyeR



EXISTENCE OF SUBGRADIENTS

e Note the connection with MC/MC

M =epi(fe),  fu(z) = flz +2) = f(2)

f(z) A fo(2) A
, Translated
Epigraph of f (—g9,1) Epigraph of f
(_ga 1)
0
| |
/ Z 2

o Let f: R” — (—00,00] be a proper convex
function. For every z € ri(dom(f)),

of(x) =S+ + G,

where:

— S is the subspace that is parallel to the affine
hull of dom( f)

— (' is a nonempty and compact set.

e Furthermore, df(x) is nonempty and compact
if and only if x is in the interior of dom(f).



EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

e Let C be a convex set, and d¢ be its indicator
function.

e For z ¢ C, 0dc(x) = O, by convention.
e For x € C, we have g € 0dc(x) iff
o0c(z) 2 0c(x) +9'(z—x), VzeCl,
or equivalently ¢’(z — x) < 0 for all z € C. Thus
00c(z) is the normal cone of C at x, denoted

Ne(x):

Ne(z)={g|g(z—2) <0,V zeC}.




EXAMPLE: POLYHEDRAL CASE

e For the case of a polyhedral set
C={x|ax<b,i=1,...,m},

we have

{0} if z € int(C),
Neo(z) = {Cone({ai |ajz =b}) if ¢ int(O).



FENCHEL INEQUALITY

o Let f:R"” — (—o00,00]| be proper convex and
let f* be its conjugate. Using the definition of
conjugacy, we have Fenchel’s inequality:

vy < flx) + f*(y), VazeRr, yeRr

e Conjugate Subgradient Theorem: The fol-
lowing two relations are equivalent for a pair of
vectors (x,y):

(i) 2’y = f(z) + f*(v).
(i) y € 0f(x).

If f is closed, (i) and (ii) are equivalent to

(iii)) = € Of*(y).

fook

Ep grap of f

o




MINIMA OF CONVEX FUNCTIONS

e Application: Let f be closed proper convex
and let X* be the set of minima of f over R~.
Then:

(a) X*=0f*(0).
(b) X* is nonempty if 0 € ri(dom(f*)).

(c) X* is nonempty and compact if and only if

0 € int(dom(f*)).
Proof: (a) From the subgradient inequality,
x* minimizes f iff 0 € df(z*),
and since
0€df(x) iff z* € df*(0),
we have
r* minimizes f iff x* € 9f*(0),

(b) 8f*(0) is nonempty if 0 € ri(dom(f*)).

(c) 9f*(0) is nonempty and compact if and only
if 0 € int(dom(f*)). Q.E.D.



SENSITIVITY INTERPRETATION

e Consider MC/MC for the case M = epi(p).

e Dual function is

where p* is the conjugate of p.

e Assume p is proper convex and strong duality

holds, so p(0) = w* = ¢* = sup,cgm { —p*(—,u)}.
Let ()* be the set of dual optimal solutions,

Q* = {p* | p(0) +p*(—p*) = 0},
From Conjugate Subgradient Theorem, pu* € Q*
if and only if —u* € 9p(0), i.e., Q* = —3p(0).

e If pis convex and differentiable at 0, —Vp(0) is
equal to the unique dual optimal solution p*.

e Constrained optimization example

p(u) =  inf  f(z),

reX, g(r)<u
If p is convex and differentiable,
. 0p(0)

= : =1,...,r



EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

e Consider the support function ox(y) of a set
X. To calculate 0o x(y) at some y, we introduce

r(y) = ox(y+y), y € Rn.

e We have dox(y) = 0r(0) = arg mingepn 7*(x).
e We have r*(x) = sup,cpn ¥’z —r(y)}, or

r*(z) = sup {y'r —ox(y+y)} = 0(x) — ',
yeR”

where ¢ is the indicator function of cl(conv(X)).

e Hence dox(y) = argmingenn 6(x) — y'z, or

Jox(y) =arg  max  y'x

:pEcl(conv()())

A

3/UX(?/2)

-
—_—
-

dax (y1)
Y2 J
Y1




EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

o Let
f(x) = max{ajx + b1,...,arx + b, }.
e For a fixed z € R™, consider
A, ={jldjz+b; = f(x)}

and the function r(x) = max{a;:v |je A}

Epigraph of f

- > >
y T T 0 T

e It can be seen that df(x) = 9r(0).

e Since r is the support function of the finite set
{a; | 7€ A.}, we see that

df (x) =0r(0) = COHV({CLj | j € Ax})



CHAIN RULE

o Let f:R™ — (—00,00] be convex, and A be a
matrix. Consider F'(z) = f(Ax) and assume that
F' is proper. If either f is polyhedral or else the
range of R(A) Nri(dom(f)) # O, we have

OF (z) = A’0f(Ax), Ve R
Proof: Showing 0F (x) D A’0f(Ax) is simple and

does not require the relative interior assumption.
For the reverse inclusion, let d € 0F () so F(z) >
F(x)+(z—x)'d>0or f(Az)—2'd > f(Az)—2'd
for all z, so (Az,x) solves

minimize f(y) — 2’d
subject to y € dom(f), Az=y.
If R(A)Nri(dom(f)) # 9, by strong duality theo-

rem, there is a dual optimal solution A, such that

(Az,z) € arg  _min _ {f(y)—2/d+N(Az—y)}

yeR™, zeR"
Since the min over z is unconstrained, we have

d= A'\, so Az € argmin,ecgm {f(y) — )\’y}, or
fly) > f(Az) + M(y — Az),  Vyehm

Hence A € 0f(Ax), so that d = A’\ € A’0f(Ax).
It follows that OF (x) C A’0f(Ax). In the polyhe-
dral case, dom(f) is polyhedral. Q.E.D.



SUM OF FUNCTIONS

o Let fi : R* — (—o00,00],7=1,...,m, be proper
convex functions, and let

F=fit+ -+ fm

Assume that N7 ri(dom(f;)) = @.
e Then

OF(z) =0fi(x) 4+ --- 4+ dfm(x), V x e R

Proof: We can write F' in the form F'(x) = f(Ax),
where A is the matrix defined by Ax = («,...,x),
and f : Rm" — (—o0, 00] is the function

fan,.som) = fi(@) + -+ fnl(Tm).

Use the proof of the chain rule.

e Extension: If for some £, the functions f;, i =
1,...,k, are polyhedral, it is sufficient to assume

(ﬂle dom(fi)) N (ﬂf;kﬂ ri(dom(fﬁ)) + 0.



CONSTRAINED OPTIMALITY CONDITION

o Let f: R — (—o0,00] be proper convex, let X
be a convex subset of ", and assume that one of
the following four conditions holds:

(i) ri(dom(f)) Nri(X) # O.

(ii) f is polyhedral and dom(f) Nri(X) # @.

(iii) X is polyhedral and ri(dom(f)) N X # @.

(iv) f and X are polyhedral, and dom(f) N X # 0.

Then, a vector z* minimizes f over X iff there
exists g € Of(x*) such that —g belongs to the
normal cone Nx (x*), i.e.,

g (x —x*) >0, VaxelX.

Proof: x* minimizes

F(z) = f(z) + ox(z)

if and only if 0 € OF(x*). Use the formula for
subdifferential of sum. Q.E.D.



LLUSTRATION OF OPTIMALITY CONDITION

Level Sets of f
No(z* \ . % \

N
Level Sets of f

V(z*)

e In the figure on the left, f is differentiable and
the condition is that

—Vf(x*) S NC(QT*)7
which is equivalent to

Vf(x*) (x —ax*) >0, VarelX.

e In the figure on the right, f is nondifferentiable,
and the condition is that

—g € No(x*) for some g € df(x*).



LECTURE 14
LECTURE OUTLINE

e Min-Max Duality

e Existence of Saddle Points

Given ¢ : X X Z — R, where X C R, Z C ™

consider
minimize sup ¢(z, 2)
A=V

subject to x € X
and
_ o f
maximize inf oz, 2)
subject to z € Z.



REVIEW

e Minimax inequality (holds always)

sup inf ,2) < inf s :
oup o, e < g up 04,2

Important issue is whether minimax equality holds.
e Definition: (x*, z*) is called a saddle point of
¢ if

o(x*, z) < p(ax*, 2*) < ¢z, 2%), Vee X, Vzes

e Proposition: (z*,2*) is a saddle point if and
only if the minimax equality holds and

" € argminsup ¢(x, 2), 2z € argmax inf ¢(z,2)
zeX ,cz zeZ zeX
e Connection w/ constrained optimization:
— Strong duality is equivalent to
inf sup L(x, u) = sup inf L(x,
r€X “ZI()) (2 1) szo r€X (2, 1)

where L is the Lagrangian function.

— Optimal primal-dual solution pairs (z*, u*)
are the saddle points of L.



MC/MC FRAMEWORK FOR MINIMAX

e Use MC/MC with M = epi(p) where p : R™ —
|—00, 00| is the perturbation function

p(u) = inf sup{¢(:z;, z) — u’z}, u € Rkm
.CCEX ZEZ

e Important fact: p is obtained by partial min.

e Note that w* = p(0) = infsup¢ and ¢(, 2):
convex for all z implies that M is convex.

o If —¢(x,-) is closed and convex, the dual func-
tion in MC/MC is

q(z) = inf ¢(z,2),  ¢* =supinfé

w* = inf sup ¢(z, 2)
z€X 2€7

w* = inf sup ¢(z, 2)

z€X 2€Z
5 g* = sup inf ¢(z, 2)
q* = sup inf ¢(:IJ,Z) ze€Z xzeX
zeZzeX

0 \ Z 0 \ u




MINIMAX THEOREM 1

Assume that:

(1) X and Z are convex.

2) p(0) =infyex sup,c 5 ¢(z, 2) < oc0.

(2)
(3) For each z € Z, the function ¢(-, z) is convex.
(4)

4) For each x € X, the function —¢(z,-) : Z —
R is closed and convex.

Then, the minimax equality holds if and only if
the function p is lower semicontinuous at u = 0.

Proof: The convexity/concavity assumptions guar-
antee that the minimax equality is equivalent to
¢* = w* in the min common/max crossing frame-
work. Furthermore, w* < oo by assumption, and
the set M |equal to M and epi(p)] is convex.

By the 1st Min Common/Max Crossing The-
orem, we have w* = ¢* iff for every sequence
{(uk,wk)} C M with up — 0, there holds w* <
liminf,_, o wg. This is equivalent to the lower
semicontinuity assumption on p:

p(0) < liminf p(ug), for all {ug} with ug — 0

k— 00



MINIMAX THEOREM 11

Assume that:

(1) X and Z are convex.

2) p(0) =infyex sup,c, ¢(z, 2) > —o0.

(2)
(3) For each z € Z, the function ¢(-, z) is convex.
(4)

4) For each x € X, the function —¢(z,-) : Z —
R is closed and convex.

(5) O lies in the relative interior of dom(p).

Then, the minimax equality holds and the supre-
mum in sup, 5 inf,c x ¢(z, z) is attained by some
z € Z. [Also the set of z where the sup is attained
is compact if 0 is in the interior of dom(p).]

Proof: Apply the 2nd Min Common/Max Cross-
ing Theorem.

e Counterexamples of strong duality and exis-
tence of solutions/saddle points can be constructed
from corresponding constrained min examples.



EXAMPLE 1

o Let X = {(z1,22) |2 >0} and Z = {z € R |
z > 0}, and let
B, 2) = e~V 4 2z,

which satisfy the convexity and closedness assump-
tions. For all z > 0,

inf {emvers 4 2} =0,

SO SUp, g infz>0 ¢(x, 2) = 0. Also, for all z > 0,

sup {e" V@@ 4 zp b =
z>0

{1 if 21 =0,

oo if x1 >0,

so infz>osup,~q ¢(z, 2) = 1.
e [Here
— inf —4/T1T2 _
p(0) = o e (o)

p(u) A

epi(p)




EXAMPLE 11

e et X=R,Z={z€R|2>0}, and let
Oz, 2) = & + 222,

which satisfy the convexity and closedness assump-
tions. For all z > 0,

. ~1/(4z) ifz>0
21 — )
inf ot =2t {_oo if > — 0,

SO SUpP, ¢ infzew ¢(z, 2) = 0. Also, for all x € R,

sup {z + z2?} =
z>0

{0 if x =0,

oo otherwise,

S0 infgex sup,~o ¢(z, z) = 0. However, the sup is
not attained, i.e., there is no saddle point.

e Here

p(u) = inf sup{z + z22 — uz}
reR z>0

{—\/u if u >0,

00 if u < 0.



SADDLE POINT ANALYSIS

e The preceding analysis indicates the importance
of the perturbation function

p(u) = a:lené)gn F(z,u),

where

F,u) = {supzez{qb(x,z) w2} ifze X,
| o0 if v ¢ X.

It suggests a two-step process to establish the min-
imax equality and the existence of a saddle point:

(1) Show that p is closed and convex, thereby
showing that the minimax equality holds by
using the first minimax theorem.

(2) Verify that the inf of sup,., ¢(x, z) over
r € X, and the sup of inf,cx ¢(z, z) over
2z € Z are attained, thereby showing that
the set of saddle points is nonempty.



SADDLE POINT ANALYSIS (CONTINUED)

e Step (1) requires two types of assumptions:

(a) Convexity/concavity /semicontinuity conditions
of Minimax Theorem I (so the MC/MC frame-
work applies).

(b) Conditions for preservation of closedness by
the partial minimization in

— inf F
p(u) = inf F(z,u)

e.g., for some u, the nonempty level sets

(x| F(e,u) <7}

are compact.

e Step (2) requires that either Weierstrass’ The-
orem can be applied, or else one of the conditions
for existence of optimal solutions developed so far
is satisfied.



CLASSICAL SADDLE POINT THEOREM

e Assume convexity/concavity /semicontinuity of
¢ and that X and Z are compact. Then the set
of saddle points is nonempty and compact.

e Proof: F'is convex and closed by the convex-
ity /concavity /semicontinuity of ¢, so p is also con-
vex. Using the compactness of Z, F' is real-valued
over X X k™, and from the compactness of X,
it follows that p is also real-valued and therefore
continuous. Hence, the minimax equality holds by
the first minimax theorem.
The function sup, ., ¢(z, 2) is equal to F'(z,0),

so it is closed, and the set of its minima over x € X
is nonempty and compact by Weierstrass’ Theo-
rem. Similarly the set of maxima of the function
inf,ex ¢(x,z) over z € Z is nonempty and com-
pact. Hence the set of saddle points is nonempty
and compact. Q.E.D.



ANOTHER THEOREM

e Use the theory of preservation of closedness
under partial minimization.

e Assume convexity/concavity /semicontinuity of
¢. Consider the functions

sup,, x,2) itxelX,
t<x>:F<x,o):{oopez¢< ) I

and

_ [ —infeex oz, 2) if 2z € Z,
rz) {oo if z¢ Z.

e If the level sets of ¢t are compact, the minimax
equality holds, and the min over x of

sup ¢(z, z)
z€/

(which is t(z)] is attained. (Take u = 0 in the
partial min theorem to show that p is closed.)

e If the level sets of ¢t and r are compact, the set
of saddle points is nonempty and compact.

e Various extensions: Use conditions for preser-
vation of closedness under partial minimization.



SADDLE POINT THEOREM

Assume the convexity /concavity /semicontinuity con-
ditions, and that any one of the following holds:

(1) X and Z are compact.

(2) Z is compact and there exists a vector z € Z
and a scalar v such that the level set {:U c

X | ¢(z,2) <~} is nonempty and compact.

(3) X is compact and there exists a vector x € X
and a scalar v such that the level set {z c

Z | ¢(x,z) >~} is nonempty and compact.

(4) There exist vectors x € X and z € Z, and a
scalar v such that the level sets

{ze X |o(z,2) <7}, {2€Z]d(z,2) =},

are nonempty and compact.

Then, the minimax equality holds, and the set of
saddle points of ¢ is nonempty and compact.



LECTURE 15

LECTURE OUTLINE

e Problem Structures
— Separable problems
— Integer/discrete problems — Branch-and-bound
— Large sum problems

— Problems with many constraints

e Conic Programming
— Second Order Cone Programming

— Semidefinite Programming



SEPARABLE PROBLEMS

e Consider the problem
m

minimize Z fi(z:)
i=1

™m
S. t. Zgji(xi)éo, 7=1,....r, ;€ X;, V1
1=1

where f; : ®? — R and g;j; : N7 — RN are given
functions, and X; are given subsets of Jt™i.

e Form the dual problem

maximize qi(p) = inf | fi(xs) + i gji(Ti)
subject to u >0

e Important point: The calculation of the dual
function has been decomposed into n simpler
minimizations. Moreover, the calculation of dual
subgradients is a byproduct of these mini-
mizations (this will be discussed later)

e Another important point: If X; is a discrete
set (e.g., X; = {0,1}), the dual optimal value is
a lower bound to the optimal primal value. It is
still useful in a branch-and-bound scheme.



LARGE SUM PROBLEMS

e (Consider cost function of the form

f(x) = Z fi(x), m is very large,
i=1
where f; : ™ — R are convex. Some examples:

e Dual cost of a separable problem.

e Data analysis/machine learning: z is pa-
rameter vector of a model; each f; corresponds to
error between data and output of the model.

— Least squares problems (f; quadratic).

— {1-regularization (least squares plus £1 penalty):

m n

mgn Z(a;x —bj)2 +~ Z |4

j=1 i=1
The nondifferentiable penalty tends to set a large
number of components of x to 0.

e Min of an expected value E{F(z,w)}, where
w is a random variable taking a finite but very
large number of values w;, 2 = 1,...,m, with cor-
responding probabilities ;.

e Stochastic programming:
min | F1(z) + Ew{min F5(z,y, w)}
x y

e Special methods, called incremental apply.



PROBLEMS WITH MANY CONSTRAINTS

e Problems of the form

minimize f(x)

subject to alx <b;, j=1,...,m

where r: very large.

e One possibility is a penalty function approach:
Replace problem with

T ERMT

min f(x) + cz P(az — bj)
j=1

where P(-) is a scalar penalty function satisfying
P(t)=0ift <0,and P(t) >0ift >0, and cis a
positive penalty parameter.

e Examples:
— The quadratic penalty P(t) = (max{0, t})Q.
— The nondifferentiable penalty P(t) = max{0,t}.

e Another possibility: Initially discard some of
the constraints, solve a less constrained problem,
and later reintroduce constraints that seem to be
violated at the optimum (outer approzimation).

e Also inner approximation of the constraint set.



CONIC PROBLEMS

e A conic problem is to minimize a convex func-
tion f : R? — (—o0, 0| subject to a cone con-
straint.
e The most useful /popular special cases:

— Linear-conic programming

— Second order cone programming

— Semidefinite programming

involve minimization of a linear function over the
intersection of an afline set and a cone.

e (Can be analyzed as a special case of Fenchel
duality.

e There are many interesting applications of conic
problems, including in discrete optimization.



PROBLEM RANKING IN

INCREASING PRACTICAL DIFFICULTY

e Linear and (convex) quadratic programming.

— Favorable special cases.
e Second order cone programming.
e Semidefinite programming.

e Convex programming.
— Favorable special cases.
— Geometric programming.

— Quasi-convex programming.

e Nonlinear/nonconvex/continuous programming.
— Favorable special cases.
— Unconstrained.

— Constrained.

e Discrete optimization/Integer programming

— Favorable special cases.



CONIC DUALITY

e Consider minimizing f(x) over z € C, where f :
R" +— (—o00,00] is a closed proper convex function
and C is a closed convex cone in R™.

e We apply Fenchel duality with the definitions

fi(z) = f(z), fQ(x):{go ii;g’

The conjugates are

e - e , [0 ifxecC
fl(A)_xSEugI;n{Ax f(w)},fg(A)—Sngw—{oo it & O,

where C* = {\ | Max < 0,V z € C} is the polar
cone of C.

e The dual problem is

minimize f*(\)

subject to A € é,
where f* is the conjugate of f and

C={\|Ne>0,VzeCl.

C

—(C'* is called the dual cone.



LINEAR-CONIC PROBLEMS

e Let f be affine, f(z) = ¢z, with dom(f) be-
ing an affine set, dom(f) = b+ S, where S is a
subspace.

e The primal problem is

minimize c'x

subject to x —be S, z e (.

e The conjugate is

f¥(A) = sup (A —c)x =sup(A—c)'(y+0b)

r—besS yes
C((A—e)b ifA—ce St
| o if \—c¢ S+,

so the dual problem can be written as

minimize b’

subject to A—ce S+, XeC.

e The primal and dual have the same form.

e If C is closed, the dual of the dual yields the
primal.



SPECIAL LINEAR-CONIC FORMS

min ¢z > max b\,
Ax=b, zeC c—A' e

min c'x = max D'\,
Ax—beC A'\=c, AeC

wherexz e R, A e Rm, ce R*, b e k™, A: mxn.

e For the first relation, let x be such that Ax = b,
and write the problem on the left as

minimize c'x
subject to x —x € N(A), zeC(C
e The dual conic problem is
minimize 2’
subject to p—c e N(A)+, pued.

e Using N(A)+ = Ra(A’), write the constraints
as ¢ — i € —Ra(A’) = Ra(A4’), n € C, or

A

c— =AM\, we C, for some A € .
e Change variables u = ¢ — A’\, write the dual as

minimize z'(c — A’))

subject to ¢ — A’ € C

discard the constant z’c, use the fact Az = b, and
change from min to max.



SOME EXAMPLES

e Nonnegative Orthant: C' = {x | x > 0}.
e The Second Order Cone: Let

C:{(:Ul,...,:vn)\:cnz\/LIJ%Jr---Jr:c%_l}

133

=y

/

e The Positive Semidefinite Cone: Consider
the space of symmetric n X n matrices, viewed as
the space " with the inner product

< X,Y >=trace(XY) Zzazzgyzg

1=1 7=1
Let C' be the cone of matrices that are positive
semidefinite.

e All these are self-dual, i.e., C = —C* = C.



SECOND ORDER CONE PROGRAMMING

e Second order cone programming is the linear-
conic problem

minimize c'x
subject to A;x —b; € C;, 1 =1,...,m,

where ¢, b; are vectors, A; are matrices, b; is a
vector in R, and

C; : the second order cone of R

e 'The cone here is

C=C;{x---xC,

3




SECOND ORDER CONE DUALITY

e Using the generic special duality form

min c'zx — max b\,
Ax—beC A'\=c, reC

and self duality of C', the dual problem is

m
maximize g b; A
i=1

™m
subject to Adi=c, NeC, i=1,....,m,
J i
i=1

where A = (A1,...,Am).

e The duality theory is no more favorable than
the one for linear-conic problems.

e There is no duality gap if there exists a feasible
solution in the interior of the 2nd order cones C;.

e Generally, second order cone problems can be
recognized from the presence of norm or convex
quadratic functions in the cost or the constraint
functions.

e There are many applications.



EXAMPLE: ROBUST LINEAR PROGRAMMING

minimize c'x

subject to ajz <bj, V(aj,b;) €Tj, j=1,...,m

where c € o7, and Tj is a given subset of Jen+1!.

e We convert the problem to the equivalent form

minimize c'x

subject to g;(x) <0, j=1,...,r,

where g;(z) = sup(y. .)er, {0z — b;}.

e For special choice where T is an ellipsoid,
Ty = {(aj + Pjuj, bj + qsuy) | fluill <1, u; € Rna }
we can express ¢gj(z) < 0 in terms of a SOC:

g;(z) = ” Slihlil{(aj + Pjuj)'w — (bj + qjuy) |

= sup (Pjz —qj)'u; + asT — by,
luj <1

= [[Pjx — ¢;l| + ajz — b;.

Thus, gj(z) < 0iff (Pjx—qj,b; —ajz) € C;, where
C; is the SOC of i+l



LECTURE 16

LECTURE OUTLINE

e Conic programming
e Semidefinite programming
e [Exact penalty functions

e Descent methods for convex/nondifferentiable
optimization

e Steepest descent method



LINEAR-CONIC FORMS

min ¢z > max b\,
Ax=b, zeC c—A' e

min c'x — max D'\,
Az—bed A'd=c, \eC

wherexz e R, A e Rm, ce R*, b e k™, A: mxn.

e Second order cone programming:

minimize c'x

subject to A;x —b; € C;, 1 =1,...,m,

where ¢, b; are vectors, A; are matrices, b; is a
vector in K", and

C; : the second order cone of Jn

e The cone hereisC =C1 x --- x C,,

e The dual problem is
maximize Z bi \;
i=1

™m
subject to Adi=c, NeC, i=1,....,m,
J i
i=1

where A = (A1,...,Am).



SEMIDEFINITE PROGRAMMING

e (Consider the symmetric n X n matrices. Inner
product < X,Y >=trace(XY) = >0, i;yij-

e Let C be the cone of pos. semidefinite matrices.

e (U is self-dual, and its interior is the set of pos-
itive definite matrices.

e Fix symmetric matrices D, Ai,..., A, and
vectors b1, ..., by, and consider

minimize < D,X >
subject to < A;, X >=1b;, 1=1,....m, X eCl

e Viewing this as a linear-conic problem (the first
special form), the dual problem (using also self-
duality of C) is

maximize Z b; \;
i=1
subject to D — (MA1+ -+ Andnm) € C

e There is no duality gap if there exists primal
feasible solution that is pos. definite, or there ex-
ists A such that D — (A1 A1 + -+ 4+ A An) is pos.
definite.



EXAMPLE: MINIMIZE THE MAXIMUM
EIGENVALUE

e Given nxn symmetric matrix M (\), depending
on a parameter vector A, choose A to minimize the
maximum eigenvalue of M ().

e We pose this problem as
minimize 2z

subject to maximum eigenvalue of M(\) < z,
or equivalently

minimize 2
subject to zI — M(\) € C,

where [ is the n x n identity matrix, and C' is the
semidefinite cone.

e If M()) is an affine function of A,
the problem has the form of the dual semidefi-

nite problem, with the optimization variables be-
ing (2, A\1,...,Am).



EXAMPLE: LOWER BOUNDS FOR
DISCRETE OPTIMIZATION

e (Quadr. problem with quadr. equality constraints

minimize x’'Qox + ajx + bo
subject to ’'Q;x +alx+b; =0, 1=1,...,m,
Qo, - .., Qm: symmetric (not necessarily > 0).

e (Can be used for discrete optimization. For ex-
ample an integer constraint x; € {0,1} can be
expressed by x? — x; = 0.

e The dual function is

g(\) = inf {z/Q(N)x+ a(N)x + b(N)},

rER™

where

QN =Qo+ > \iQs,
i—1

a(\) =ao+ Y Niai, bA)=bo+ > Aib;
1=1 1=1

e It turns out that the dual problem is equivalent
to a semidefinite program ...



EXACT PENALTY FUNCTIONS

e We use Fenchel duality to derive an equiva-
lence between a constrained convex optimization
problem, and a penalized problem that is less con-
strained or is entirely unconstrained.

e We consider the problem

minimize f(x)
subject to x € X, g(x) <0,

where g(z) = (g1(),...,9-(x)), X is a convex
subset of i, and f : ®* — RN and g; : kR — RN

are real-valued convex functions.

e We introduce a convex function P : R” — R,
called penalty function, which satisfies

Pu)=0, Vu<0, P(u)>0, if u; > 0 for some ¢

e We consider solving, in place of the original, the
“penalized” problem

minimize f(z) + P(g(z))
subject to = € X,



FENCHEL DUALITY

e We have

inf {f() + P(g(x))} = inf {p(u) + P(u)}

where p(u) = inf e x g(2)<u f(2) is the primal func-
tion.

e Assume —oo < ¢* and f* < oo so that p is
proper (in addition to being convex).

e By Fenchel duality

inf {p(u) + P(u)} = sup{q(p) — Q(u)},

ueR” ©w>0

where for © > 0,

q(p) = inf {f(z) + wg(z)}

reX

is the dual function, and () is the conjugate convex
function of P:

Q(p) = usgggr{u’u — P(u)}



PENALTY CONJUGATES

‘P(U)Zcmax{(),u} Q1) :A{O if0<u<ec

oo otherwise

- -
0 u 0 C u
AP(u) = max{0, au + u?} AQ(N)
Slope =8 ~
0 U 0 a 1z

e Important observation: For () to be flat for
some 1 > 0, P must be nondifferentiable at 0.



FENCHEL DUALITY VIEW

) q(n)
i /
0 / [ \ u>
A

A [ f+ Q)
i q(p)
=7 &
0 / o \ %

e For the penalized and the original problem to
have equal optimal values, () must be“flat enough”
so that some optimal dual solution p* minimizes
Q, i.e., 0 € 9Q(u*) or equivalently

p* € 0P(0)

o True if P(u) = c¢) i max{0,u;} with ¢ >
|o*|| for some optimal dual solution p*.



DIRECTIONAL DERIVATIVES

e Directional derivative of a proper convex f:

f/(z: d) = lim fae+ad) = fl@) dom(f), d € Rr

al0 o

f(z + ad)}

f(z+@d)—f(x)

N

Slope:

\

f(:C) Slop:e: fiz:d)
>
0 (o] o’

e The ratio

flz +ad) — f(z)

Q
is monotonically nonincreasing as « | 0 and con-
verges to f/(x;d).

e For all x € ri(dom(f)), f/(z;-) is the support
function of 0f(x).



STEEPEST DESCENT DIRECTION

e (Consider unconstrained minimization of convex

f R — R,

e A descent direction d at x is one for which
f'(x;d) < 0, where

f'(z;d) = lim flz +ad) = f(z) = sup dg

|0 o gedf(x)
is the directional derivative.

e (Can decrease f by moving from z along descent
direction d by small stepsize «.

e Direction of steepest descent solves the problem
minimize f/(x;d)
subject to [|d|| <1

e Interesting fact: The steepest descent direc-

tion is —g*, where g* is the vector of minimum
norm in Jf(x):

min f/(z;d) = min max d’g= max min d'g
IdlI<1 ldlI<1 gedf(x) g€of(z) ||d||<1
= max (—[lgl]) =— min |lg]

gedf(x) geIf(x)



STEEPEST DESCENT METHOD

e Start with any z¢ € R".

e Fork >0

L — COLJk

LEk+1

, calculate —g., the steepest descent

direction at x; and set

e Difficulties

— Need the entire 0f(xx) to compute gy .

— Serious convergence issues due to disconti-

nuity of df(x) (the method has no clue that
0f(x) may change drastically nearby).

e Example with aj determined by minimization
along —gi: {1} converges to nonoptimal point.
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LECTURE OUTLINE

e Subgradient methods

e (alculation of subgradients

e (Convergence

3K 3K 3K 5K 5K 5K 5K 5k 5k 5k ok ok ok ok ok ok Sk Sk sk sk sk skoskoskoskoskoskoskeskeskeskeskeskeskoskeskoskosRosR R R SRR R R Rk

e Steepest descent at a point requires knowledge

of the entire subdifferential at a point

e Convergence failure of steepest descent

e Subgradient methods abandon the idea of com-

puting the full subdifferential to effect cost func-

tion descent ...

Move instead along the direction of a single

arbitrary subgradient



SINGLE SUBGRADIENT CALCULATION

e Subgradient calculation for minimax:

f([l?) = Sup ¢(x7 Z)

z€/

where Z C ™ and ¢(-, z) is convex for all z € Z.

e For fixed x € dom(f), assume that z, € Z
attains the supremum above. Then

g € 0¢(z,2:) =  g. € df(x)

e Proof: From subgradient inequality, for all ,

fly) = Sup P(y,2) > ¢y, 22) > d(x, 22) + g (y — )
= f(z) + g, (y — x)

e Special case: Dual problem of min ¢ x 4()<0 f():

maxq(p) = inf Lz, p) = inf {f(2) +1/9(2)}

or min,>o F'(u), where F(—p) = —q(p).
o If x, € argmingex{f(z)+ wg(z)} then

—g(zp) € OF (1)



LGORITHMS: SUBGRADIENT METHOD

e Problem: Minimize convex function f : R" —
R over a closed convex set X.

e [terative descent idea has difficulties in the ab-
sence of differentiability of f.

e Subgradient method:

Trp+1 = Px(xr — argr),

where ¢, is any subgradient of f at xg, ax is a
positive stepsize, and Px(-) is projection on X.

Level sets of f

o
\

1

'/

LTk — OCrdk



KEY PROPERTY OF SUBGRADIENT METHOD

e For a small enough stepsize aj, it reduces the
Fuclidean distance to the optimum.

Level sets of f X
P
Lk
=c \

—

< 90°

Tr+1 = Px(xx — argk)

e Proposition: Let {x;} be generated by the
subgradient method. Then, for all y € X and k:

|zkr1—yll* < llzk—yll* =200 (f (me) — f(y)) +oitllgrll”
and if f(y) < f(xk),
|ze+1 — yll < llze —yl,

for all o, such that

2(f(xx) — f(y)).

0 <o <
gk |2



PROOF

e Proof of nonexpansive property
|Px(x) = Px ()| < le —yl, Vo, yehm

Use the projection theorem to write

(z — Px(z)) (z — Px(z)) <0, VzeX

from which (Px(y) — PX(:E))/(:E — Px(z)) < 0.

Similarly, (Px(z) — Px(y)) (y — Px(y)) < 0.
Adding and using the Schwarz inequality,

|Px @)~ Px@)||” < (Px(v) — Px (@) (y -
< ||Px () = Px(@)]| - ly — =l
Q.E.D.

e Proof of proposition: Since projection is non-
expansive, we obtain for all y € X and £,
st = yl? = [|Px (@ — arge) — g

< |zx — argr — y||?

= llzx — ylI? — 20mg;,(zr — y) + il grl?
<oy — ylI2 = 20 (f(2r) — f(y)) + 2 llgwll?,

where the last inequality follows from the subgra-
dient inequality. Q.E.D.




CONVERGENCE MECHANISM

e Assume constant stepsize: ap = «

o If ||gx|| < c for some constant ¢ and all k,
21— < lae—a*[2—2a(f(ar)—f (@) +a2e?
so the distance to the optimum decreases if

2(f(zx) — f(z%))

D<a< 5
C

or equivalently, if x; does not belong to the level
set

fo| 1)< s+ %5 }

Level set

(2] 7(@) < f* +ac*/2}

Optimal solution set



STEPSIZE RULES

e Constant Stepsize: ai = «.
e Diminishing Stepsize: a; — 0, >, ap = o0

e Dynamic Stepsize:

flxr) — fx

A =
2
where fi is an estimate of f*:

— If fi = f*, makes progress at every iteration.
If f < f* it tends to oscillate around the

optimum. If fr > f* it tends towards the
level set {x | f(z) < fr}-

— fr can be adjusted based on the progress of
the method.

e Example of dynamic stepsize rule:

fe = min f(z;) — o,

0<j<k

and ¢ (the “aspiration level of cost reduction”) is
updated according to

5 B {,05k if f(xrs1) < fr,
k+1 — max{ﬁ5k,5} if f(zr+1) > [,

where 6 > 0, 8 < 1, and p > 1 are fixed constants.



SAMPLE CONVERGENCE RESULTS

o Let f =infi>o f(zr), and assume that for some
c, we have

¢ >sup{|lgll | g € Of(xx)}.
k>0

e Proposition: Assume that ay is fixed at some
positive scalar . Then:

(a) If f* = —o0, then f = f*.
(b) If f* > —o0, then

e Proposition: If oy satisfies

k— 00

o
lim ap =0, g Qp = 00,
k=0

then f = f*.
e Similar propositions for dynamic stepsize rules.

e Many variants ...



LECTURE 18

LECTURE OUTLINE

Approximate subgradient methods
e-subdifferential
e-subgradient methods

Incremental subgradient methods



APPROXIMATE SUBGRADIENT METHODS

e (Consider minimization of

f([l?) = Sup ¢(x7 Z)

z€/

where Z C ™ and ¢(-, z) is convex for all z € Z
(dual minimization is a special case).

e To compute subgradients of f at x € dom(f),
we find z, € Z attaining the supremum above.
Then

gz € 0P(x, 2z) = gz € 0f(x)

e T'wo potential areas of difficulty:

— For subgradient method, we need to solve
exactly the above maximization over z € Z.

— For steepest descent, we need all the subgra-
dients, and then there are convergence diffi-
culties to contend with.

e In this lecture we address the first difficulty, in
the next lecture the second.

e We consider methods that use “approximate”
subgradients.



e-SUBDIFFERENTIAL

e We enlarge df(x) so that we take into account
“nearby” subgradients.

e Fot a proper convex f : R? +— (—o0, 00| and
e > 0, we say that a vector g is an e-subgradient
of f at a point x € dom(f) if

f(z) > f(x)+(z—x)'g—k¢, V 2z € jn

() A

\
6;\(:13, f(x) — 6)

|
V %

e The e-subdifferential Ocf(x) is the set of all e-
subgradients of f at x. By convention, 0. f(z) = @
for ¢ dom(f).

e We have N¢ o0 f(z) = 0f(x) and

O, f(x) C O, f(x) if0<er <eg



PROPERTIES OF «-SUBDIFFERENTIALS

e Assume that f is closed proper convex, € > 0.

e O.f(xr) is nonempty and closed for all x €
dom(f). (Use nonvertical separating hyperplane
theorem.)

7(2) A

Slopes:| endpoints of d. f(x)

e O.f(x) is compact iff 2 € int(dom(f)). True in
particular, if f is real-valued.

e Neighborhood/continuity property: Sub-
gradients at nearby points are e-subgradients at
given point (for sufficiently large €).

e The support function of O f(x) is

. fle+ay)— f(z) +e
Oo.f(z)(y) = sup y'g= inf
H@ gED. f (=) a>0 «



CALCULATION OF AN «SUBGRADIENT

e (Consider minimization of

f(x) = sup ¢(z, 2), (1)

ze/

where x € k", z € R™, Z is a subset of ™, and
¢ : R x R™ — (—o0, 0] is a function such that
¢(-, z) is convex and closed for each z € Z.

e How to calculate e-subgradient at z € dom(f)?

o Let z, € Z attain the supremum within ¢ > 0
in Eq. (1), and let g, be some subgradient of the
convex function ¢(-, zz).

e For all y € R, using the subgradient inequality,

fly) = Sup o(y,2) > ¢y, 2z)
> O, 22) + 9oy — ) > f(x) — e+ g2 (y — @)

i.e., g 1s an e-subgradient of f at x, so

¢(x7Z$) Z Sup gb(.CIZ,Z) — € and gz € agb(xv'zﬁ)
z€Z

- gz € O f(x)



e-SUBGRADIENT METHOD

e (Can be viewed as an approximate subgradient
method, using an e-subgradient in place of a sub-
gradient.

e Problem: Minimize convex f : " — R over a
closed convex set X.

e Method:

Trp+1 = Px(Tr — argr)

where g; is an €x-subgradient of f at xp, ai is a

positive stepsize, and Px (-) denotes projection on
X.

e Can be viewed as subgradient method with “er-
rors’ .



CONVERGENCE ANALYSIS

e Basic inequality: If {zy} is the e-subgradient
method sequence, for all y € X and £ > 0

|zt —yll® < low—ylI*—2an (f ()~ f (y)—ex) +arllge

e Replicate the entire convergence analysis for
subgradient methods, but carry along the €x terms.

e Example: Constant ap = «, constant €, = e.
Assume ||gx|| < ¢ for all k. For any optimal x*,

Jher—a* 2 < e |20 (f ()~ f*—e) +a2e?

so the distance to x* decreases if

2(f(xp) — f* —¢)

D<a< 5
C

or equivalently, if x; is outside the level set

fo| s <o ves %y |

e Example: If o, — 0, >, ar — 00, and €, — ¢,
we get convergence to the e-optimal set.



INCREMENTAL SUBGRADIENT METHODS

e (Consider minimization of sum

fz) = Zfz‘(ﬂf)

e Often arises in duality contexts with m: very
large (e.g., separable problems).

e Incremental method moves x along a sub-
gradient g; of a component function f; NOT
the (expensive) subgradient of f, which is ). g;.

e View an iteration as a cycle of m subiterations,
one for each component f;.

e Let x; be obtained after k£ cycles. To obtain
Tr+1, do one more cycle: Start with ¢g = xg, and
set Tr11 = Ym, after the m steps

Y = Px(Yi—1 — axgi), i=1,...,m

with g; being a subgradient of f; at ;.

e Motivation is faster convergence. A cycle
can make much more progress than a subgradient
iteration with essentially the same computation.



CONNECTION WITH «SUBGRADIENTS

e Neighborhood property: If x and x are
“near” each other, then subgradients at x can be
viewed as e-subgradients at x, with ¢ “small.”

o If g € 0f(x), we have for all z € Rn,

f(z) = f(z) +g'(z — o)
> f(x) +g'(z —x) + f(z) — f(z) +g'(z — x)
> f(x) +9'(z —x) — ¢

where € = |f(z) — f(z)| + |lg|| - [[x — (. Thus,
g € O.f(x), with e: small when z is near x.

e The incremental subgradient iter. is an e-subgradient

iter. with € = €1 + - - - + €,,, Where ¢; is the “error”
in ith step in the cycle (¢;: Proportional to ay).

o Use

Ocy J1(x) + -+ + Oc,, fm(x) C Oc f(2),

where € = €1 + -+ + €,,, to approximate the e-
subdifferential of the sum f =", f;.

e Convergence to optimal if a, — 0, ), oy — 00.



CONVERGENCE OF INCREMENTAL SUBGR.

e Problem

min Z fi(x)
1 =1

reX 4

e Incremental subgradient method

4.
Tht1 = Um ik, Vik = Vi1 — kgl ,i=1,....m

starting with ¥g = xy, where g; . 1s a subgradi-
ent of f; at ¥;_1 k.

e Analysis parallels/extends the one for nonincre-
mental subgradient methods

e Key Lemma: For all y € X and k&,
zkr1=yl? < [|zr—yl[>—20u (f (zr) - f (y)) +07C2,
where C' = 5>""" ., C; and

C; = Sgp{\lg\l | g € 0fi(xr) UOfi(Yim1k)}



ERROR BOUND: CONSTANT STEPSIZE

e For o = o, we have

aC? am? Cg

inf flan) < fr4+ O < o

k>0 2

where

C() — maX{C1, ce ,Cm}

is the max component subgradient bound. (Com-
parable error to the nonincremental method.)

e Sharpness of the estimate: There are prob-
lems for which the upper bound is (almost) sharp
with cyclic order of processing the component func-
tions (see the end-of-chapter problems).

e Lower bound on the error: There is a prob-
lem, where even with best processing order,

osz'g

=+ < inf f(zy)

~ k>0

where

C() — maX{C1, ceey Cm}

e (QQuestion: Is it possible to improve the upper
bound by optimizing the order of processing the
component functions?



RANDOMIZED ORDER METHODS

Thi1 = |Tk — @kg(wkafk)]+

where wy, 1s a random variable taking equiprobable
values from the set {1,...,m}, and g(wg,xr) is a
subgradient of the component f,, at x.

e Assumptions:

(a) {wr} is a sequence of independent random
variables. Furthermore, the sequence {wy}
is independent of the sequence {x}.

(b) The set of subgradients {g(wg,zx) | & =
0,1,.. } is bounded, i.e., there exists a pos-
itive constant Cy such that with prob. 1

|g(wg, zx)|| < Co, VE>0

e Stepsize Rules:
— Constant: o = «
— Diminishing: ), ap =00, >, ()% < o0

— Dynamic



RANDOMIZED METHOD W/ CONSTANT STEP
e With probability 1

amC'?
< * 0
lir>l% f(gjk) Jr+ 2

A better/sharp error bound!
Proof: By adapting key lemma, for all y € X, k

|zk1=yl1? < [lar—yl[2=2a(fu, (@)= fur (y)) +02CF

Take conditional expectation with F, = {xo,..., T}

E{llzrr —yll? | F} < ||z — yl|?
— QOzE{fwk ZEk — fwk | fk} +a203

= ka—yw—mz (filzr) = fi(y)) + a2C3

= [fox — 2 - fjj (F(a) ~ 1) +02C3,

where the first equality follows since wy takes the
values 1,..., m with equal probability 1/m.



PROOF CONTINUED 1

e Fix v > 0, consider the level set L. defined by

2 2
zwz{xeX\ﬂ@<fw+7+mg%}

and let y, € Ly be such that f(yy) = f* + i

Define a new process {Zx} as follows

- ~ + PN
x — { [xk o @g(Wk,CEk)] if Tl §é L’Y?
k+1 .
Y~ otherwise,

where Zo = xg. We argue that {2} (and hence

also {x}) will eventually enter each of the sets
L.
Using key lemma with y = y-, we have

E{Hi”kﬂ — ?MHZ | Fk} < ||Zx —?MHQ — Rk

where

o= Lo (f@n) = f(yy) —a2CF if iy & Ly,
0 if &5, = y.



PROOF CONTINUED 11

o If ), ¢ L., we have

20 )
&= (f(@r) = f(yy)) — a2C
p
22a<f* 2 amC{ f—l)—oz2C§
m 2 v
2«
=

Hence, as long as Zx ¢ L~, we have

2

E{|[Zrr1 = yol12 | Fr} < 26 — yal = -
This, cannot happen for an infinite number of it-
erations, so that zp € L. for sufficiently large
k (the Supermartingale Convergence Theorem is
used here; see the notes.) Hence, in the original
process we have

2  amC?
. f < * O
lgof(xk) </ +7+ 2

with probability 1. Letting v — oo, we obtain
infr>o f(zr) < f*4+amCé/2. Q.E.D.



A CONVERGENCE RATE RESULT

e Let ap = o in the randomized method. Then,
for any positive scalar ¢, we have with prob. 1

amC? + ¢
. < * 0
Ogng(xk)_f + ) :

where N i1s a random variable with

m(d(zo, X*))2

873

E{N} <

where d(xp, X*) is the min distance of xg to the
optimal set X*.

e Compare w/ the deterministic method. It is
guaranteed to reach after processing no more than

m(al(af;o,X*))2

843

K =

components the level set

2 2
C
_|_ozm 20—|—€}



LECTURE 19

LECTURE OUTLINE

e Return to descent methods

e Fixing the convergence problem of steepest de-
scent

e c-descent method

e Extended monotropic programming



IMPROVING STEEPEST DESCENT

e (Consider minimization of a convex function f :
R — R, over a closed convex set X.

e Return to iterative descent: Generate {xy} with

flzr) < f(zk)

(unless xj, is optimal).

e If f is differentiable, the gradient/steepest de-
scent method is

Try1 =Tk — gV f(zg)

Has good convergence for a; sufficiently small or
optimally chosen.

e If f is nondifferentiable, the steepest descent
method is

Thktl1 = T — Qg

where gy, is the vector of minimum norm on 0f (xx)
... but has convergence difficulties.

e We will discuss another method, called e-descent:

Th+1 = Tk — OJk

where g, is the vector of minimum norm on Oc f(zy,).
It fixes the convergence difficulties.



REVIEW OF «SUBGRADIENTS

e For a proper convex f : R? +— (—o0,00] and
e > 0, we say that a vector ¢ is an e-subgradient
of f at a point z € dom(f) if

f(z) > f(x)+(z—x)'g—k, V 2z € jn

f(z) A

\‘
6;\(33, f(x) — e)

|
V Z

e The e-subdifferential O f(x) is the set of all e-
subgradients of f at x. By convention, 0. f(z) = @
for x ¢ dom(f).

e We have N¢ o0 f(z) = 0f(x) and

O, f(x) C O, f(x) if0<er <eg



e-SUBGRADIENTS AND CONJUGACY

e For any x € dom(f), consider z-translation of
f, i.e., the function f, given by

fo(d) = f(x+d)— f(x), VdeRr

and 1ts conjugate

f2(g) = sup {d'g—f(z+d)+f(x)} = f*(g)+f(x)—g'x

deRn

e We have

g € 0f(x) iff sup {d’g flz+d)+f(x } <0,
deRn

so 0f(x) is the 0-level set of f7:

={g | fx(g) <0}.

Similarly, 0. f(x) is the e-level set of f;:

= {9 f2(g9) <€}



e-SUBDIFFERENTIALS AS LEVEL SETS

e We have

= {91 [(9)+f(@)-gz < e} ={g| f£(g) < ¢}

A ) AConjugate
Translated v ‘J)
Epigraph
of f L )
L—LO " 5 —

@ 4
} £.(d)
0 /
—
\/ 0
A #5001)
0 v
NM(x) - (ol ()
------ ~H(x) - @f
0
(c)

o If f is closed

sup {—f#(9)} = f3*(0) = fo(0) =0

geER™

so O f(x) # O for every x € dom(f) and € > 0.



PROPERTIES OF «-SUBDIFFERENTIALS

e Let f: closed proper convex, z € dom(f), € > 0.
e Then O.f(x) is nonempty and closed.

e O.f(x) is compact iff f§ has no nonzero di-
rections of recession. True if f is real-valued or
z € int(dom(f)) [support fn of dom(fs) is reces-
sion fn of fx].

e In one dimension: g € O f(x) iff f(x + ad) >
f(x) — e+ adg for all d € " and a > 0.

e So g € O.f(x) iff the line with slope d’g that
passes through f(x) — € lies under f(x + ad).

AFi(0) = f(z + ad)

Slope = infyep, f(z) d'g

Slope = Supyea, f(2) 4’9

e Therefore,
d) —
sup d'g = inf f(z +ad) = f(z) +
g€ f(x) a>0 o

This formula for the support function og_g(,)(d)
can be shown also in multiple dimensions.



e-DESCENT PROPERTIES

e For f: closed proper convex, by definition, 0 €
Oc f(x) iff

fla) < inf f(2)+e

e For f: closed proper convex and d € R,

d) —
sup d'g= inf f(z +ad) = f(z) +
g€ f(x) a>0 e

SO

infoso f(zr+ad) < f(x) —e iff  sup d'g<0

g€ f ()
\ Slope = sup ¢y, ¢z d'9
F@)r = f(x)
f(af)—e——i ; flz) — ¢
Slope = 0
0| = z 0 v

o If 0 ¢ Ocf(x), we have sup ¢y s,y d'g <0 for

= arg min :
g =arg min gl

(Projection Th.), so infaso f(x — ag) < f(z) — €.



e-DESCENT METHOD

e Method to minimize closed proper convex f:

Tk+1 = Tk — Okgk

where

—(gr = ar min :
g g cmin | lg|

and a 1S a positive stepsize.

o If gp =0, ie., 0 € O.f(xk), then z is an -
optimal solution.

If g = 0, choose aj that reduces the cost func-
tion by at least e, i.e.,

f(zr+1) = f(zr — argr) < flzg) — €

e Drawback: Must know O, f(xx).

e Motivation for a variant where O f(xx) is ap-
proximated by a set A(xy) that can be computed
more easily than O f(xy).

e Then use

= arg min :
9k ggeA(xk) gl

[project on A(xy) rather than O f(xx)].



e-DESCENT - OUTER APPROXIMATION

e Here O.f(xr) is approximated by a set A(x)
such that

Oc f(zr) C A(zk) C Oye f(k),

where 7 is a scalar with v > 1.

e Then the method terminates with a ~ye-optimal
solution, and effects at least e-reduction on f oth-
erwise.

e Example of outer approximation for sum case

f=h++fm
Take
A(z) = (O fr(x) + -+ + O fm(x)),
based on the fact

Ocf(x) C Cl(@efl(x) 4.+ &fm(a:)) C Omef(x)

e Application to separable problems where each
Oc fi(x) is a one-dimensional interval. Then to find
an e-descent direction, we must solve a quadratic
programming /projection problem.



EXTENDED MONOTROPIC PROGRAMMING

o Let
— = (x1,...,Tm) with z; € R
— fi: R"i — (—o00, 0] is closed proper convex
— S is a subspace of Rri+-+nm

e Extended monotropic programming problem:

™m
minimize Z fi(x;)

i=1
subject to x € S

¢ Monotropic programming is the special case
where each x; is 1-dimensional.

e Models many important optimization problems
(linear, quadratic, convex network, etc).

e Has a powertul symmetric duality theory.



DUALITY

e Convert to the equivalent form
m
minimize Z fi(zi)
i=1

subject to z; =x;, 1=1,...,m, xreS

e Assigning a dual vector \; € R™ to the con-
straint z; = x;, the dual function is

g(\) = inf Nx + Z inf {fi(zi) — Nz}
i=1

reS z; ERM™
Yt () if e S
—0 otherwise,

where gi(A\i) = inf.,en{ fi(zi) — Njzi} = —fFr(N).

e The dual problem is the (symmetric) extended
monotropic program

minimize Z ()
i=1

subject to \ € S+



OPTIMALITY CONDITIONS

e Assume that —oo < ¢* = f* < oo. Then
(x*, A*) are optimal primal and dual solution pair
if and only if

x* €5, A e St Aeofi(xr), Vi

e Specialization to the monotropic case (n; =
1 for all 7): The vectors x* and A\* are optimal
primal and dual solution pair if and only if

T* €5, A+ e St (X, A\f)ely, Vi
where

Ty = {(zi, \i) | 25 € dom(fi), fi (i) <N < fiF(wi) }

e Interesting application of these conditions to
electrical networks.



STRONG DUALITY THEOREM

e Assume that the extended monotropic program-
ming problem is feasible, and that for all feasible
solutions x, the set

SJ‘ + aeDl,e(x) + o+ Dm e(x)

Y

is closed for all ¢ > 0, where
Dic(x)={(0,...,0,X:,0,...,0) | \i € Ocfi(xs)}

Then g* = f*.

e An unusual duality condition. It is satisfied if
each set O.fi(x) is either compact or polyhedral.
Proof is also unusual - uses the e-descent method!

e Monotropic programming case: If n; = 1,
D; ¢(x) is an interval, so it is polyhedral, and ¢* =
/.

e There are some other cases of interest. See the
text.

e The monotropic duality result extends to con-
vex separable problems with nonlinear constraints.
(Hard to prove ...)



LECTURE 20

LECTURE OUTLINE

Approximation methods

Cutting plane methods

Proximal minimization algorithm
Proximal cutting plane algorithm

Bundle methods



APPROXIMATION APPROACHES

e Approximation methods replace the original
problem with an approximate problem.

e The approximation may be iteratively refined,
for convergence to an exact optimum.

e A partial list of methods:

Cutting plane/outer approximation.
Simplicial decomposition/inner approxima-
tion.

Proximal methods (including Augmented La-
grangian methods for constrained minimiza-
tion).

Interior point methods.

e A partial list of combination of methods:

Combined inner-outer approximation.
Bundle methods (proximal-cutting plane).

Combined proximal-subgradient (incremen-
tal option).



SUBGRADIENTS-OUTER APPROXIMATION

e (Consider minimization of a convex function f :
R — R, over a closed convex set X.

e We assume that at each x € X, a subgradient
g of f can be computed.

e We have
f(z) > f(x)+9g(z—z), VzeRn,

so each subgradient defines a plane (a linear func-
tion) that approximates f from below.

e The idea of the outer approximation/cutting
plane approach is to build an ever more accurate
approximation of f using such planes.

/:Vf(xl) + (z —z1)'91

4 f(=o) + (z — z0)"go




CUTTING PLANE METHOD

e Start with any o € X. For k > 0, set

Tp4+1 € arg min Fi(x),
zeX

where
Fi(x) = max{f(:vo)—l—(w—xo)/go, e f(xk)—l—(af;—:ck)’gk}

and g; is a subgradient of f at x;.

e Note that Fi(x) < f(x) for all x, and that
Fj.(xk+1) increases monotonically with k. These
imply that all limit points of z; are optimal.

Proof: If xp — x then Fj(xr) — f(x), [otherwise
there would exist a hyperplane strictly separating
epi(f) and (z,limg—, o0 Fi(2r))]. This implies that
f(x) <limg_ oo Fr(x) < f(z) for all z. Q.E.D.



CONVERGENCE AND TERMINATION

e We have for all k
Fi(z41) < f* < min f(z;)

e Termination when min;<y f(x;)—Fk(xk+1) comes
to within some small tolerance.

e For f polyhedral, we have finite termination
with an exactly optimal solution.

/x:/f(l'l) + (z —71)'91

L f(=o) + (z — z0)' g0

I
I
I
I
I
I
I
I
< ! g

e Instability problem: The method can make
large moves that deteriorate the value of f.

e Starting from the exact minimum it typically
moves away from that minimum.



VARIANTS

e Variant I: Simultaneously with f, construct
polyhedral approximations to X.

e Variant II: Central cutting plane methods

[ @) + (@~ m)on

|~ .
_—1Central pair (x2,ws2)
|

if(l()) b (x — x0)'g0

e Variant III: Proximal methods - to be dis-
cussed next.



PROXIMAL/BUNDLE METHODS

e Aim to reduce the instability problem at the
expense of solving a more difficult subproblem.

e A general form:

vit1 € argmin{ Fy(z) + px ()}

Fi(x) = max{f(xo)—l—(x—ajo)/go, e f(xk)—l—(x—a:k)/gk}

1
pr(@) =, o=yl
ZCk

where ci 1s a positive scalar parameter.

e We refer to pi(x) as the proximal term, and to
its center yx as the proximal center.

Ve —
Y [




PROXIMAL MINIMIZATION ALGORITHM

e Starting point for analysis: A general algorithm
for convex function minimization

. 1 2
Tr+1 € arg xrgégql% {f(a?) + %0 |z — x| }

— f:R" — (—00,00] is closed proper convex
— ¢k 18 a positive scalar parameter
— xo 1s arbitrary starting point

f(zr)

Yk

Ve — 5|z

2¢y

e Convergence mechanism:

1

2 |Thr1 — z|® < flxk).

Ve = f(Tr+1) +

. 1 2 .
Cost improves by at least ,_ |lzx+1—zk|”, and this
is sufficient to guarantee convergence.



RATE OF CONVERGENCE 1

e Role of penalty parameter cx:

Y

Tk Thkil Thio T* T TK L_‘;‘l"ﬂfk+2 T* T

e Role of growth properties of f near optimal
solution set:

! | {El
Ty Tr4+1 Tgy2 T* €T Tk ;,,k,;;'l” [ S T




RATE OF CONVERGENCE I1

e Assume that for some scalars 3 > 0, § > 0, and
a> 1,

f*+B(d@)” < f(z), VaeeR" withdz)<3s

where
d(z) = min ||z — 27|
x*reX*

i.e., growth of order o from optimal solution set
X",

o If « =2 and limy_.o cx = ¢, then

. d(ﬂ?k_H) 1
lim s <
PP (as) T 14 G2

linear convergence.

e If 1 <a <2, then

a0

< 0

superlinear convergence.



FINITE CONVERGENCE

e Assume growth order o = 1:
"+ 6d(x) < f(x), VxeR"”,

e.g., [ is polyhedral.

e Method converges finitely (in a single step for
co sufficiently large).

Zo r1 To =x* T X v @




PROXIMAL CUTTING PLANE METHODS

e Same as proximal minimization algorithm, but
f is replaced by a cutting plane approximation
Fk:

1
Tk+1 € arg mi}rg {Fk(ac) + 2 |z — xk||2}

xTe

where

Fi(x) = max{f(a:o)—l—(x—azo)/go, Ce f(a:k)—l—(x—xk)/gk}

e Drawbacks:

(a) Hard stability tradeoff: For large enough
¢ and polyhedral X, x,y1 is the exact min-
imum of Fj over X in a single minimization,
so it is identical to the ordinary cutting plane
method. For small ¢; convergence is slow.

(b) The number of subgradients used in F
may become very large; the quadratic pro-
gram may become very time-consuming.

e These drawbacks motivate algorithmic variants,
called bundle methods.



BUNDLE METHODS

Allow a proximal center y, = x:

in{F
zet1 € argmin{ Fi(z) + pa (@) }

Fi(x) = max{f(a:o)—l—(:c—azo)/go, e f(a:k)—l—(x—azk)'gk}
pue) = 0 o=l

e Null/Serious test for changing y,: For some
fixed g € (0,1)

_ e 3 f(yk) = f(xR41) > Bk,
P Vg if flyr) = f@rg) < B0,

O = fy) = (Fr(xrt1) + pr(hs1)) >0

|
|
|
|
|
|
|

Ye Ykl = Tk x Yk = Yk+1 Th+t1 x

Serious Step Null Step



LECTURE 22
LECTURE OUTLINE

Review of Fenchel Duality
Review of Proximal Minimization
Augmented Lagrangian Methods

Dual Proximal Minimization Algorithm



FENCHEL DUALITY FRAMEWORK

e (Consider the problem

minimize fi(x) + fa(x)

subject to z € R”,

n

where f1i " — (—o00,00] and f2
are closed proper convex functions.

— (—00, 00|

e Line of Analysis: Convert to the equivalent
problem

minimize fl (581 ) -+ f2 (582)

subject to z1 =2, 1 € dom(f1), z2 € dom( f2)

e Apply convex programming duality for equality
constraints and obtain the dual problem

minimize f; (A) + fo (=)
subject to A € R”,

where f; and f, are the conjugates.

e Complete symmetry of primal and dual (after a
sign change to convert the dual to minimization).



FENCHEL DUALITY THEOREM

e Consider the Fenchel framework:

(a) If f* is finite and ri(dom(fl)) ﬂri(dom(fg)) +
@, then strong duality holds and there exists
at least one dual optimal solution.

(b) Strong duality holds, and (z*, \*) is a primal
and dual optimal solution pair if and only if

* . / N\ k * . ! N\ k
x Gargxrgée%{fl(x)—a:)\ }, x Eargxrggcer}m{fg(:v)—ka:)\ }

e By Fenchel inequality, the last condition is equiv-
alent to

A€ dfi(x™) lor equivalently z* € df;(\*)]
and

—\* € 0fa(x™) lor equivalently z* € 95 (—\")]



GEOMETRIC INTERPRETATION

—— Slope A*

N > Slope A

e When f; and/or f, are differentiable, the opti-
mality condition is equivalent to

A= Vfl(x*) and/or A= _VfQ(CE*)



RECALL PROXIMAL MINIMIZATION

e Applies to minimization of closed convex proper

f:

. 1 9
Tkl = arg xrg;ér?ll {f(x) + 2, |z — xk|| }

where f: R" — (—o00,00], o is an arbitrary start-
ing point, and {cx} is a positive scalar parameter
sequence with infi>q cp > 0.

e We have f(zr) — f*. Also zx — some minimizer
of f, provided one exists.

e Finite convergence for polyhedral f.

e Each iteration can be viewed in terms of Fenchel
duality.

S _ 2
e = golle|— @il

T Tkl xr* X



DUAL PROXIMAL MINIMIZATION

e The proximal iteration can be written in the
Fenchel form: min,{fi(x) + f2(z)} with

1

@) = 1@, fole) =, =

e The Fenchel dual is

minimize f7(A) + f5 (=)
subject to A e R”

e We have f35(—)) = —z, A+ F||\||%, so the dual
problem is

minimize  f*(\) — 2k A+ % A
subject to A € R"

where f* is the conjugate of f.
e f> is real-valued, so no duality gap.

e Both primal and dual problems have a unique
solution, since they involve a closed, strictly con-
vex, and coercive cost function.



DUAL PROXIMAL ALGORITHM

e (Can solve the Fenchel-dual problem instead of
the primal at each iteration:

Aew = arg min { £ = @A+ TN (1)

e Lagragian optimality conditions:

Ti41 € arg m?g{x/)\kﬂ — f(:c)}

xT e

| 1
Thi1 = arg min {CU/)\k—I—l +y, = l‘kHQ}
T n k

or equivalently,

Lk — Tk+1

Aet1 € Of (Trg1), Akt1 = o

e Dual algorithm: At iteration k, obtain A\pi;
from the dual proximal minimization (1) and set

Tht1l = Tk — CkAk+1

e As x, converges to a primal optimal solution z*,
the dual sequence A\, converges to 0 (a subgradient
of f at x*).



VISUALIZATION

St A= %’“H/\II? f*(N)

Slope = zx*
1 4

i P .
7 R 5

5k 1 —
Slope = i Slope = Tj-+1

Primal Proximal Iteration Dual Proximal Iteration

¢ The primal and dual implementations are
mathematically equivalent and generate iden-
tical sequences {zy}.

e Which one is preferable depends on whether f
or its conjugate f* has more convenient structure.

e Special case: When —f is the dual function of
the constrained minimization ming)<o F(z), the
dual algorithm is equivalent to an important gen-
eral purpose algorithm: the Augmented Lagrangian
methot. A

e This method (to be discussed shortly) aims to
find a subgradient of the primal function p(u) =
ming )<, F(x) at w = 0 (i.e., a dual optimal solu-
tion).



AUGMENTED LAGRANGIAN METHOD

e (Consider the convex constrained problem

minimize f(x)
subject to r € X, FEx=d

e Primal and dual functions:

p(v)=Emlg§; f(z), q(A Zgg{f z) + X (Ex—d)}

e Assume p: closed, so (¢, p) are “conjugate” pair.
e Proximal algorithms for maximizing g:

1
Aot = arg max {q(\) - o 1A - el

peR™
/ Ck 2
vner = arg min {p(v) + Mo+ 5 [lo]*]
veER™ 2
Dual update: Ak+1 = Ak + CrUE+1
e Implementation:

Vi1 = Fxpy1 — d, Tra1 € arg Hél;{l Le, (x, )
X

where L. is the Augmented Lagrangian function

Le(a, ) = f(x) + N (Be — d) + _ || Bz - d|



GRADIENT INTERPRETATION

e )11 can be viewed as a gradient:

>\k—|—1 — Tk _C:k+1 — Vchk, (xk)a
where 1
c = inf — 2}
6c(z) = inf {f@)+ o~z

(For geometrical insight, consider the case where
f is linear in the following figure.)

e So the dual update xr11 = zr — ckAryr1 can be
viewed as a gradient iteration for minimizing ¢.(z)
(which has the same minima as f).

e The gradient is calculated by the dual prox-
imal minimization. Possibilities for faster meth-
ods (e.g., Newton, Quasi-Newton). Useful in aug-
mented Lagrangian methods.



PROXIMAL LINEAR APPROXIMATION

e Convex problem: Min f: R" — R over X.

e Proximal outer linearization method: Same
as proximal minimization algorithm, but f is re-
placed by a cutting plane approximation Fj:

. 1 2
F —_
Tr41 € arg xl’éléel’?ll { k:(x) + 2 ||5’3 xk“ }

Lk — Tk+1
Ck

where g; € 9f(x;) for i < k and

Akl =

Fy(z) = max{ f(x0)+(z—z0)'go, .. ., f(xx)+(z—zk) g } +0x (x)

e Proximal Inner Linearization Method (Dual
proximal implementation): Let F}’ be the con-
jugate of Fy. Set

Akt1 € arg {2%& {FQ(A) — T\ + CQk ||>\||2}

Tkl = Tk — CkAk+1

Obtain gry1 € Of(xk+1), either directly or via

/ *
A — A
Jk+1 € arg ){rel?ggb{wkﬂ f ( )}

e Add gri1 to the outer linearization, or zx;1 to
the inner linearization, and continue.



PROXIMAL INNER LINEARIZATION

e It is a mathematical equivalent dual to the outer
linearization method.

' e 0' \ = )\»
/

Slope = x

e Here we use the conjugacy relation between
outer and inner linearization.

e Versions of these methods where the proximal
center is changed only after some “algorithmic
progress” is made:

— The outer linearization version is the (stan-

dard) bundle method.

— The inner linearization version is an inner
approximation version of a bundle method.



LECTURE 23

LECTURE OUTLINE

Interior point methods
Constrained optimization case - Barrier method
Conic programming cases

Linear programming - Path following



BARRIER METHOD

e Inequality constrained problem

minimize f(x)

subject to z € X, gi(z) <0, j=1,...,m

where f and g; are real-valued convex and X is
closed convex.

e We assume that the interior (relative to X) set
S = {:cEX|gj(m) <0,j:1,...,r}

1S nonempty.

e Note that because S is convex, any feasible point
can be approached through S (the Line Segment
Principle).

e The barrier method is an approximation method.

e It replaces the indicator function of the con-
straint set

§(z | cl(9))

by a smooth approximation within the relative in-
terior of S.



BARRIER FUNCTIONS

e Consider a barrier function, that is continuous
and goes to oo as any one of the constraints g;(x)
approaches 0 from negative values.

e Examples:

B@) ==Y m{-g,@}, B@)=-3 gjix).

j=1

e Barrier method:

xk:argmin{f(ac)—l—ekB(ac)}, k=0,1,...,
xeS

where the parameter sequence {e.} satisfies 0 <
€1 < €k for all £ and €. — 0.

eB(x)
€ <e€

Boundary of S | |1~ €¢B(x) Boundary of S




BARRIER METHOD - EXAMPLE

I

1 I Il _1 1
205 21 215 22 225 205 21 215 22 225

0.

&)

0.5

o

-0.

[$4)

-0.5

minimize f(x) =1 ((x1)2 + (:U2)2)
subject to 2 € ',
with optimal solution z* = (2,0).
e Logarithmic barrier: B(z) = —In (z' — 2)
e We have z;, = (14 v/1+ € ,0) from
Tk € arg 3121111>r; { ! ((x1)2 + (x2)2) —epln(z' — 2)}
o As ¢ is decreased, the unconstrained minimum
r, approaches the constrained minimum z* = (2, 0).

e Aser — 0, computing x, becomes more difficult
because of ill-conditioning (a Newton-like method
is essential for solving the approximate problems).



CONVERGENCE

e Every limit point of a sequence {x} generated
by a barrier method is a minimum of the original
constrained problem.

Proof: Let {x} be the limit of a subsequence {xx }recx.
Since zr € S and X is closed, x is feasible for the
original problem.

If z is not a minimum, there exists a feasible
zr* such that f(z*) < f(x) and therefore also an
interior point z € S such that f(z) < f(x). By the
definition of xx,

f(mk)_i_ekB(xkﬁ) < f(j)_FEkB(j)a V kK,
so by taking limit

f(z) + Jiminf e (zk) < f(2) < f(z)

Hence liminfy— oo, kex €xB(xk) < 0.

If x € S, we have limk_mo,k;gK EkB<$k) = O,
while if z lies on the boundary of S, we have by
assumption limg— co, ke B(xg) = oo. Thus

liminf e B(zy) > 0,

k— oo

— a contradiction.



SECOND ORDER CONE PROGRAMMING

e Consider the SOCP
minimize 'z

subject to Ajx —b, €C;, i =1,...,m,

where z € R™, ¢ is a vector in R", and for i =
1,...,m, A; 1s an n; X n matrix, b; 1s a vector in
R, and C; is the second order cone of R™:.

e We approximate this problem with

minimize ¢z + ex Z Bi(A;x — b;)
i=1

subject to z € R”,

where B; is the logarithmic barrier function:

Bi(y) = —In(yn, — (Wi +-+ +¥n;-1)), ¥y € int(Cy),

and {e;} is a positive sequence with ¢, — 0.

e FEssential to use Newton’s method to solve the
approximating problems.

e Interesting complexity analysis



SEMIDEFINITE PROGRAMMING

e (Consider the dual SDP

maximize b\

subject to C — (MA1+ -+ AnAm) € D,

where D is the cone of positive semidefinite ma-
trices.

e The logarithmic barrier method uses approxi-
mating problems of the form

maximize b'A+exln (det(C—A1Ar—- - = AnAm))

over all A € ®™ such that C — (M A1+ -+ AnAnm)
is positive definite.

e Here e, >0 and ¢, — 0.

e Furthermore, we should use a starting point

such that C — A\1A; — -+ — A\, Ay, 1S positive def-
inite, and Newton’s method should ensure that
the iterates keep C' — \1 A1 —- - - — A\ A, Within the

positive definite cone.



LINEAR PROGRAMS/LOGARITHMIC BARRIER

e Apply logarithmic barrier to the linear program
minimize c'x
. (LP)
subject to Az = b, x>0,

The method finds for various e > 0,

z(e) = arg min F¢(x )-argmin{c’x—e lnacz},
x€eS z€eS -

where S = {a: | Ax = b, © > 0}. We assume that S
is nonempty and bounded.

e Ase— 0, z(e) follows the central path

Point x(e) on
central path

All central paths start at the analytic center

Too = arg min E Inz;
xeS

and end at optimal solutions of (LP).



PATH FOLLOWING W/ NEWTON’S METHOD

e Newton’s method for minimizing Ft:
T=x4 alx —x),

where z is the pure Newton iterate

r = arg giilb {VFe(x)’(z —z) + 1(z—z) VF.(z)(z — x)}

e By straightforward calculation

x=x— Xq(z,€),

q(z,e) = Xz—e, e=(1...1), z=c— A\,

A= (AX?A")TTAX (Xc — ee),

and X is the diagonal matrix with x;, i =1,...,n
along the diagonal.

e View ¢(z,¢) as a “normalized” Newton incement
[the Newton increment (z—z) transformed by X —*
that maps x into e.

o Consider ||q(x,€)|| as a prozimity measure of the
current point to the point z(¢) on the central path.



KEY RESULTS

e It is sufficient to minimize F. approximately, up
to where ||q(x,¢€)|| < 1.

e Fact 1: If x > 0, Az = b, and ||¢(x, €)|| < 1,

/ . /
cxr— min cyge(n—l—\/n).
Ay=b,y=>0

Defines a “tube of convergence”.

Set {x | llq(x,eVll < 1}

e Fact 2: The “termination set” {x | [|lg(z, €)]| <
1} is part of the region of quadratic convergence.

e Fact 2: If ||¢(x,¢)|| < 1, then the pure Newton
iterate x satisfies

lg(z, €)|| < ||g(z,€)|” < 1.



SHORT STEP METHODS

Set {x | llq(x.ek*+ 1)l ;

Set {x | llq(x e

e Idea: Use a single Newton step before changing
¢ (a little bit, so the next point stays within the
“tube of convergence”).

Proposition Let z > 0, Az = b, and suppose
that for some v < 1 we have ||q(z,¢)|| <. Then if
e = (1—0n""?)e for some 6 > 0,

v+

ol <, 70

In particular, if

v §<y(1—y)(1+v)",

Central Path

we havé [lq(z, )| < 7.

e Can be used to establish nice complexity results;
but ¢ must be reduced VERY slowly.



LONG STEP METHODS

e Main features:

— Decrease ¢ faster than dictated by complex-
ity analysis.

— Use more than one Newton step per (approx-
imate) minimization.

— Use line search as in unconstrained Newton’s
method.

— Require much smaller number of (approxi-
mate) minimizations.

(a) (b)

Short Step method Long Step method

e The methodology generalizes to quadratic pro-
gramming and convex programming.



LECTURE 24: REVIEW /EPILOGUE

LECTURE OUTLINE

Basic concepts of convex analysis

Basic concepts of convex optimization
Geometric duality framework - MC/MC
Constrained optimization duality - minimax
Subgradients - Optimality conditions
Special problem classes

Descent /gradient /subgradient methods

Polyhedral approximation methods



BASIC CONCEPTS OF CONVEX ANALYSIS

e Epigraphs, level sets, closedness, semicontinuity

juillel e e @ Epigraph

\ e

iF--:
| A

—p
Convex function Nonconvex function

e Finite representations of generated cones and
convex hulls - Caratheodory’s Theorem.

e Relative interior:
— Nonemptiness for a convex set
— Line segment principle
— Calculus of relative interiors

e Continuity of convex functions

e Nonemptiness of intersections of nested sequences
of closed sets.

e Closure operations and their calculus.
e Recession cones and their calculus.

e Preservation of closedness by linear transforma-
tions and vector sums.



HYPERPLANE SEPARATION

(a)

e Separating/supporting hyperplane theorem.
e Strict and proper separation theorems.

e Dual representation of closed convex sets as
unions of points and intersection of halfspaces.

L

A union of points An intersection of halfspaces

e Nonvertical separating hyperplanes.



CONJUGATE FUNCTIONS

A (—y,1)

e Conjugacy theorem: f = f**

e Support functions

\ e
\ \
O« w)/lul

e Polar cone theorem: C = C**
— Special case: Linear Farkas’ lemma



POLYHEDRAL CONVEXITY

e Lixtreme points

~

—

Extreme Extreme Extreme
Points Points Points

(a) (b) (©)

e A closed convex set has at least one extreme
point if and only if it does not contain a line.

e Polyhedral sets.
e Finitely generated cones: C = cone({al, . ,ar})

e Minkowski-Weyl Representation: A set P is
polyhedral if and only if

P = conv({vl, e ,vm}) + C,

for a nonempty finite set of vectors {vi,...,vm}
and a finitely generated cone C.

¢ Fundamental Theorem of LP: Let P be a poly-
hedral set that has at least one extreme point. A
linear function that is bounded below over P, at-
tains a minimum at some extreme point of P.



BASIC CONCEPTS OF CONVEX OPTIMIZATIONM

e Weierstrass Theorem and extensions.

e Characterization of existence of solutions in
terms of nonemptiness of nested set intersections.

Level Sets of f

Optimal
Solution

e Role of recession cone and lineality space.

e Partial Minimization Theorems: Character-
ization of closedness of f(z) = inf,ecpm F(x,z) in
terms of closedness of F'.

epi(f)

./(

f(z) = inf F(I.Z‘j S — — -z

a2 ;
rd »
T



MIN COMMON/MAX CROSSING DUALITY

w A Min Common
Point w*

| Min Common

Point w*
Max Cr’ossings)(/ ¢

; 3/
Max C -
Point g* \ ax Crossing

Point g* \
(a) (b)
wh

M
Min Common
Point w* |
Max Crossing - M
Point g¢* /
c)

Sy

o
-

u

0

(

o Dafined.by a singlérsgtvMoa R’ .

Point w* Point w*

o W= inf(o,w)GM’U]

*

A

® § = SUp,cpn q(p) =inf(ywyem{w + p'u}
e Weak duality: ¢* < w”

e Two key questions:

— When does strong duality ¢* = w* hold?

— When do there exist optimal primal and dual
solutions?



MC/MC THEOREMS (M CONVEX, W* <

¢ MC/MC Theorem I: We have ¢* = w* if and
only if for every sequence {(uk,wk)} C M with
ur — 0, there holds

w” < liminf wg.

k— oo

¢ MC/MC Theorem II: Assume in addition that
—oo < w™ and that

D = {u | there exists w € ® with (u,w) € M}

contains the origin in its relative interior. Then
¢ = w" and there exists u such that q(u) = ¢*.

¢ MC/MC Theorem III: Similar to II but in-
volves special polyhedral assumptions.

(1) M is a “horizontal translation” of M by —P,
M:M—{(U,O)|UEP}7

where P: polyhedral and M: convex.
(2) We have ri(D) N P # @, where

D = {u | there exists w € ® with (u,w) € M}

)



IMPORTANT SPECIAL CASE

e Constrained optimization: inf, cx, 4)<0 f(2)

e Perturbation function (or primal function)

p(u) = inf  f(x),

z€X, g(z)<u

p(u) A
M epi(p

/

w* = p(0) \ﬂ
i

e Introduce L(z,u) = f(z) + p'g(x). Then

(9(z), f(z)) | z € X}

o) = inf {p(a) + ')
ueR"

— inf {f(x) 4 ,Lblu}

ueR”, z€X, g(z)<u

_ {infwex L(x,p) if p >0,
— 00 otherwise.



NONLINEAR FARKAS’ LEMMA

o et X CR", f: X R and g; : X — R,
j=1,...,r, be convex. Assume that

f(x) >0, V x € X with g(x) <0
Let

Q" ={u|pn>0, flz) +p'g(z) >0,Vae X}

e Nonlinear version: Then Q™ is nonempty and
compact if and only if there exists a vector x € X
such that gj(z) <O forall j=1,...

A A A
{lo@)|f(@) [z e X} {(9(@)|f(2)) | = € X} {(9(@)|f(2)) |z € X}

(a) (b) (c)

e Polyhedral version: Q* is nonempty if ¢ is
linear [g(z) = Az — b] and there exists a vector
x € ri(X) such that Az — b < 0.



CONSTRAINED OPTIMIZATION DUALITY

minimize f(x)

subject to z € X, g;(x) <0, j=1,...,r,

where X Cc ®", f: X — R and g; : X — R are
convex. Assume f*: finite.

e Connection with MC/MC: M = epi(p) with
p(U) — inf:cEX,g(a:)Su f($)
e Dual function:

_ [ infyex L(x,p) if p >0,
a(n) = { —00 otherwise

where L(xz,u) = f(x) + p'g(x) is the Lagrangian
function.
¢ Dual problem of maximizing ¢(u) over u > 0.

e Strong Duality Theorem: ¢* = f* and there
exists dual optimal solution if one of the following
two conditions holds:

(1) There exists x € X such that g(z) < 0.

(2) The functions g, j = 1,...,r, are affine, and
there exists z € ri(X) such that g(x) <0.



OPTIMALITY CONDITIONS

e We have ¢* = f*, and the vectors z* and p* are
optimal solutions of the primal and dual problems,
respectively, iff * is feasible, u* > 0, and

v €argmin L(z, p7),  pjgi(z7) =0, Vj.
T e

e For the linear/quadratic program
minimize lx'Qz + c'z
subject to Az <b,

where @ is positive semidefinite, (z*, ™) is a pri-
mal and dual optimal solution pair if and only if:

(a) Primal and dual feasibility holds:
Az® <b, pt >0

(b) Lagrangian optimality holds [z* minimizes
L(z,p*) over z € ®"]. (Unnecessary for LP.)

(c) Complementary slackness holds:

(Az" —b)'u" =0,

1.e., u; > 0 implies that the jth constraint is tight.
(Applies to inequality constraints only.)



FENCHEL DUALITY

e¢ Primal problem:

minimize fi(x) + fo(x)

subject to = € R",

where f1i " — (—oo0,00] and fo " — (—o00, 0]
are closed proper convex functions.

e¢ Dual problem:

minimize f; (A) + fa (=)
subject to A € R”,

where f; and f, are the conjugates.

— Slope A*

< > Slope A




CONIC DUALITY

¢ Consider minimizing f(x) over x € C, where f :
R" — (—o0,00] is a closed proper convex function
and C is a closed convex cone in R".

e We apply Fenchel duality with the definitions

0 ifzxzed,

fi(z) = f(x), fQ(x):{oo if v ¢ C.

e¢ Linear Conic Programming:

minimize ¢z

subject to x —be S, xeC.

e The dual linear conic problem is equivalent to

minimize b\

subject to A—ce ST, xeC.

e Special Linear-Conic Forms:

. / /
min cx — max b A\,
szb, xec C—A/AGC\’
. / /
min cx — max b A\,
Ax—bel A'd=c, \eC

where z e R", Ae R™, ceR", bec R™, A: m X n.



SUBGRADIENTS

f(z) A
s
7w,f<w>>
oL~ >
e

Of(x) = D for z € ri(dom(f)).

e Conjugate Subgradient Theorem: If f is closed
proper convex, the following are equivalent for a
pair of vectors (z,y):

(i) ="y = f(=)+ f* ().
(ii)) y € of ().
(iii)) = € af*(y).

e Characterization of optimal solution set X™ =
arg mingcxn f(x) of closed proper convex f:

(b) X* is nonempty if 0 € ri(dom(f*)).

(c) X* is nonempty and compact if and only if
0 e int(dom(f*)).



CONSTRAINED OPTIMALITY CONDITION

o Let f:R" +— (—o0,0] be proper convex, let X
be a convex subset of ®", and assume that one of
the following four conditions holds:

(i) r (dom ) Nri(X) # 0.
(ii) f is polyhedral and dom(f) Nri(X) # &.
(iii) X is polyhedral and ri(dom(f)) N X # &.
(iv) f and X are polyhedral, and dom(f) N X # @.

Then, a vector z* minimizes f over X iff there ex-
ists g € 0f(z*) such that —g belongs to the normal
cone Nx(z"), 1.e.,

g (x—2") >0, VaxelX.

Level Sets of f




COMPUTATION: PROBLEM RANKING IN

INCREASING COMPUTATIONAL DIFFICULTY

e Linear and (convex) quadratic programming.
— Favorable special cases.

e Second order cone programming.
e Semidefinite programming.

e Convex programming.
— Favorable cases, e.g., separable, large sum.
— Geometric programming.

e Nonlinear /nonconvex/continuous programming.
— Favorable special cases.
— Unconstrained.
— Constrained.

e Discrete optimization/Integer programming
— Favorable special cases.

e Caveats/questions:
— Important role of special structures.
— What is the role of “optimal algorithms”?

— Is complexity the right philosophical view to
convex optimization?



DESCENT METHODS

Use vector of min

norm on —Jdf(x); has convergence problems.

e Steepest descent method

0
0
-20 4

tx

e Subgradient method

Level sets of f

Tk — Ckgk

e Incremental (possibly randomized) variants for

minimizing large sums.

Fixes the problems of steep-

e c-descent method

est descent.



APPROXIMATION METHODS I

e Cutting plane:

e Instability problem: The method can make
large moves that deteriorate the value of f.

e Proximal Minimization method:

Ve —
Ye [

e Proximal-cutting plane-bundle methods: Com-
binations cutting plane-proximal, with stability
control of proximal center.



APPROXIMATION METHODS II

e Dual Proximal - Augmented Lagrangian meth-
ods: Proximal method applied to the dual prob-
lem of a constrained optimization problem.

A A
f(x\) 5k+:1:;c)\— PV ALY
Yk \
Slope = z*
\ “
» .
0 x )\k+1 / \0 \\ A
1 =
Slope = i \ Slope = Zk41
Primal Proximal Iteration Dual Proximal Iteration

e Interior point methods:

0.

&

O

-0.

[&)]

205 21 215 22 225 ) 2.05 21 215 22 225
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