
LECTURE 24: REVIEW/EPILOGUE 

LECTURE OUTLINE 

• Basic concepts of convex analysis 

• Basic concepts of convex optimization 

• Geometric duality framework - MC/MC 

• Constrained optimization duality - minimax
 

• Subgradients - Optimality conditions 

• Special problem classes 

• Descent/gradient/subgradient methods 

• Polyhedral approximation methods 

All figures are courtesy of Athena Scientific, and are used with permission. 



BASIC CONCEPTS OF CONVEX ANALYSIS
 

• Epigraphs, level sets, closedness, semicontinuity
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• Finite representations of generated cones and 
convex hulls - Caratheodory’s Theorem. 

Relative interior: • 

− Nonemptiness for a convex set
 
− Line segment principle
 

− Calculus of relative interiors
 

• Continuity of convex functions 

• Nonemptiness of intersections of nested sequences 
of closed sets. 

• Closure operations and their calculus.
 

Recession cones and their calculus.
• 

• Preservation of closedness by linear transforma­
tions and vector sums. 



HYPERPLANE SEPARATION
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• Separating/supporting hyperplane theorem. 

• Strict and proper separation theorems. 

• Dual representation of closed convex sets as 
unions of points and intersection of halfspaces. 

A union of points An intersection of halfspaces

• Nonvertical separating hyperplanes.
 



CONJUGATE FUNCTIONS
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• Conjugacy theorem: f = f�� 

• Support functions 
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Polar cone theorem: C = C�� • 

− Special case: Linear Farkas’ lemma 



POLYHEDRAL CONVEXITY 

•	 Extreme points 

Extreme
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A closed convex set has at least one extreme
• 
point if and only if it does not contain a line. 

•	 Polyhedral sets. 

Finitely generated cones: C = cone
�
{a1, . . . , ar}

� 
• 

• Minkowski-Weyl Representation: A set P 
is polyhedral if and only if 

P = conv
�
{v1, . . . , vm}

� 
+ C, 

for a nonempty finite set of vectors {v1, . . . , vm}
and a finitely generated cone C. 

Fundamental Theorem of LP: Let P be a
• 
polyhedral set that has at least one extreme point.
 
A linear function that is bounded below over P ,
 
attains a minimum at some extreme point of P .
 



BASIC CONCEPTS OF CONVEX OPTIMIZATION 

Weierstrass Theorem and extensions. • 

Characterization of existence of solutions in • 
terms of nonemptiness of nested set intersections.
 

Optimal
Solution

Level Sets of f

X

•	 Role of recession cone and lineality space. 

Partial Minimization Theorems: Charac­• 
terization of closedness of f(x) = infz∈�m F (x, z) 
in terms of closedness of F . 
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MIN COMMON/MAX CROSSING DUALITY
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•	 Defined by a single set M ⊂ �n+1. 

•	 w∗ = inf(0,w)∈M w 

q(µ) 
� •	 q∗	 = sup µ∈�n = inf(u,w)∈M {w + µ�u} 

•	 Weak duality: q∗ ≤ w∗ 

•	 Two key questions: 
− When does strong duality q∗ = w∗ hold? 

− When do there exist optimal primal and dual 
solutions? 



MC/MC THEOREMS (M CONVEX, W ∗ < )
 

 MC/MC Theorem I: We have q∗ = w∗ if •
and only if for every sequence 

�
(uk, wk)

� 
⊂ M 

with uk 
0, there holds →

w∗ ≤ lim inf wk.
 
k→∞ 

• MC/MC Theorem II: Assume in addition 
that −∞ < w∗ and that 

D = 
�
u | there exists w ∈ � with (u, w) ∈ M} 

contains the origin in its relative interior. Then 
q∗ = w∗ and there exists µ such that q(µ) = q∗. 

• MC/MC Theorem III: Similar to II but in­
volves special polyhedral assumptions. 

(1) M is a “horizontal translation” of M̃ by −P ,
 

M = M̃ − 
�
(u, 0) | u ∈ P 

�
, 

where P : polyhedral and M̃ : convex. 

(2) We have ri(D̃) ∩ P =� Ø, where 

D̃ = 
�
u | there exists w ∈ � with (u, w) ∈ M̃ } 



IMPORTANT SPECIAL CASE
 

    • Constrained optimization: infx∈X, g(x)≤0 f(x)

•	 Perturbation function (or primal function) 

p(u) = inf f(x), 
x∈X, g(x)≤u 

0 u

{
(g(x), f(x)) | x ∈ X

}

M = epi(p)

w∗ = p(0)

p(u)

q∗

• Introduce L(x, µ) = f(x) + µ�g(x). Then 

q(µ) = inf 
�
p(u) + µ�u

� 
r u∈� 

= inf 
�
f(x) + µ�u

� 

u∈�r , x∈X, g(x)≤u � 
infx∈X L(x, µ) if µ ≥ 0,

= −∞	 otherwise. 



0

� � 

NONLINEAR FARKAS’ LEMMA


• Let X ⊂ � � , and gj � ,n, f : X → � : X → �
j = 1, . . . , r, be convex. Assume that 

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0 

Let 

∗Q = μ | μ ≥ 0, f(x) +  μ′g(x) ≥ 0, ∀ x ∈ X . 

• Nonlinear version: Then Q∗ is nonempty and 
compact if and only if there exists a vector x ∈ X 
such that gj (x) < 0 for all j = 1, . . . , r.  
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∗ • Polyhedral version: Q is nonempty if g is 
linear [g(x) =  Ax − b] and there exists a vector 
x ∈ ri(X) such that Ax − b ≤ 0. 



CONSTRAINED OPTIMIZATION DUALITY
 

minimize f(x)
 
subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r,
 

where X ⊂ �n, f : X �→ � and gj : X �→ � are 
convex. Assume f∗: finite. 

• Connection with MC/MC: M = epi(p) with 
p(u) = infx∈X, g(x)≤u f(x) 

Dual function: • 
� 

infx∈X L(x, µ) if µ ≥ 0,
q(µ) = −∞ otherwise 

where L(x, µ) = f(x) + µ�g(x) is the Lagrangian 
function. 

• Dual problem of maximizing q(µ) over µ ≥ 0.
 

• Strong Duality Theorem: q∗ = f∗ and there 
exists dual optimal solution if one of the following 
two conditions holds: 

(1) There exists x ∈ X such that g(x) < 0. 

(2) The functions gj , j = 1, . . . , r, are affine, and 
there exists x ∈ ri(X) such that g(x) ≤ 0. 



OPTIMALITY CONDITIONS
 

We have q∗ = f∗, and the vectors x∗ and µ∗ are • 
optimal solutions of the primal and dual problems, 
respectively, iff x∗ is feasible, µ∗ ≥ 0, and 

x∗ ∈ arg min L(x, µ∗), µ∗j gj (x∗) = 0, ∀ j. 
x∈X 

• For the linear/quadratic program 
1minimize 2 x
�Qx + c�x 

subject to Ax ≤ b, 

where Q is positive semidefinite, (x∗, µ∗) is a pri­
mal and dual optimal solution pair if and only if: 

(a) Primal and dual feasibility holds: 

Ax∗ ≤ b, µ∗ ≥ 0 

(b) Lagrangian optimality holds [x∗ minimizes 
L(x, µ∗) over x ∈ �n]. (Unnecessary for LP.) 

(c) Complementary slackness holds: 

(Ax∗ − b)�µ∗ = 0, 

i.e., µ∗j > 0 implies that the jth constraint is tight. 
(Applies to inequality constraints only.) 



FENCHEL DUALITY
 

al problem: • Prim

minimize f1(x) + f2(x) 
subject to ,x ∈ �n 

where f1 : �n �→ (−∞, ∞] and f2 : �n �→ (−∞, ∞] 
are closed proper convex functions. 

• Dual problem: 

minimize f�(λ) + f�(−λ)1 2 

subject to ,λ ∈ �n 

where f1 
� and f2 

� are the conjugates. 
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CONIC DUALITY
 

• Consider minimizing f(x) over x ∈ C, where f : 
�n �→ (−∞, ∞] is a closed proper convex function 
and C is a closed convex cone in �n. 

• We apply Fenchel duality with the definitions
 

f1(x) = f(x), f2(x) = 
� 0 if x ∈ C, 
∞ if x /∈ C. 

• Linear Conic Programming: 

minimize c�x


subject to x − b ∈ S, x ∈ C.
 

• The dual linear conic problem is equivalent 
to 

minimize	 b�λ 

ˆsubject to λ − c ∈ S⊥, λ ∈	C. 

• Special Linear-Conic Forms: 

min c�x	 max b�λ, 
Ax=b, x∈C	

⇐⇒ 
c−A�λ∈Ĉ 

min max b�λ, 
Ax−b∈C 

c�x ⇐⇒ 
A�λ=c, λ∈Ĉ 

where x ∈ �n, λ ∈ �m, c ∈ �n, b ∈ �m, A : m×n.
 



SUBGRADIENTS
 

0

(−g, 1)

f(z)

(
x, f(x)

)

z

∂f(x) = Ø for x ∈ ri
�
dom(f)

�
. 

• Conjugate Subgradient Theorem: If f is 
closed proper convex, the following are equivalent 
for a pair of vectors (x, y): 

(i)	 x�y = f(x) + f�(y). 

(ii)	 y ∈ ∂f(x). 

(iii) x ∈ ∂f�(y). 

• Characterization of optimal solution set
 
X∗	 = arg minx∈�n f(x) of closed proper convex f : 

(a)	 X∗ = ∂f�(0). 

(b)	 X∗ is nonempty if 0 ∈ ri
�
dom(f�)

�
. 

(c)	 X∗ is nonempty and compact if and only if 
0 ∈ int

�
dom(f�)

�
. 
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� 

CONSTRAINED OPTIMALITY CONDITION


• Let f : �n �→ (−∞,∞] be proper convex, let X 
be a convex subset of �n, and assume that one of 
the following four conditions holds: 

(i) ri dom(f) �∩ ri(X) =  Ø. 

(ii) f is polyhedral and dom(f) ∩ ri(X) =  Ø. 

(iii) X is polyhedral and ri dom(f) ∩ X = Ø.


(iv) f and X are polyhedral, and dom(f) ∩ X =� Ø. 

Then, a vector x ∗ minimizes f over X iff there 
exists g ∈ ∂f(x ∗) such that −g belongs to the 
normal cone NX (x ∗), i.e., 

g′(x − x ∗) ≥ 0, ∀ x ∈ X. 

Level Sets of f 

x ∗ 

∇f(x ∗) 

Level Sets of f 

x ∗ 

NC (x ∗) 
NC (x ∗) 

C C 
g 

∂f(x ∗) 



COMPUTATION: PROBLEM RANKING IN
 

INCREASING COMPUTATIONAL DIFFICULTY
 

•	 Linear and (convex) quadratic programming. 
− Favorable special cases. 

•	 Second order cone programming. 

•	 Semidefinite programming. 

•	 Convex programming. 
− Favorable cases, e.g., separable, large sum. 
− Geometric programming. 

•	 Nonlinear/nonconvex/continuous programming. 
− Favorable special cases. 
− Unconstrained. 
− Constrained. 

•	 Discrete optimization/Integer programming 

− Favorable special cases. 

•	 Caveats/questions: 
− Important role of special structures. 
− What is the role of “optimal algorithms”? 

− Is complexity the right philosophical view to 
convex optimization? 



DESCENT METHODS
 

• Steepest descent method: Use vector of min 
norm on −∂f(x); has convergence problems. 
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• Subgradient method:
 

M
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• Incremental (possibly randomized) variants 
for minimizing large sums. 

• �-descent method: Fixes the problems of 
steepest descent. 



APPROXIMATION METHODS I 

• Cutting plane: 

x0 x1x2x3

f(x)

X

x

f(x0) + (x− x0)′g0

f(x1) + (x− x1)′g1

x∗

• Instability problem: The method can make 
large moves that deteriorate the value of f . 

Proximal Minimization method: • 

f(x)

xxk+1 x∗
yk

Fk(x)

γk − pk(x)

γk

• Proximal-cutting plane-bundle methods:
 
Combinations cutting plane-proximal, with stabil­
ity control of proximal center. 



APPROXIMATION METHODS II
 

• Dual Proximal - Augmented Lagrangian 
methods: Proximal method applied to the dual 
problem of a constrained optimization problem. 

γk

γk −
1

2ck
‖x− xk‖2

f(x)

xxk+1xk

x∗

Slope = xk
Slope = xk+1

λk+1

Slope = x∗

δk

δk + x′
kλ− ck

2
‖λ‖2

Primal Proximal Iteration Dual Proximal Iteration

f!(λ)

• Interior point methods:
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