LECTURE 24: REVIEW /EPILOGUE

LECTURE OUTLINE

Basic concepts of convex analysis

Basic concepts of convex optimization
Geometric duality framework - MC/MC
Constrained optimization duality - minimax
Subgradients - Optimality conditions
Special problem classes

Descent /gradient /subgradient methods

Polyhedral approximation methods

All figures are courtesy of Athena Scientific, and are used with permission.



BASIC CONCEPTS OF CONVEX ANALYSIS

e LEpigraphs, level sets, closedness, semicontinuity
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e Finite representations of generated cones and
convex hulls - Caratheodory’s Theorem.

e Relative interior:
— Nonemptiness for a convex set
— Line segment principle
— C(Calculus of relative interiors

e Continuity of convex functions

e Nonemptiness of intersections of nested sequences
of closed sets.

e C(losure operations and their calculus.
e Recession cones and their calculus.

e Preservation of closedness by linear transforma-
tions and vector sums.



HYPERPLANE SEPARATION

(a)

e Separating/supporting hyperplane theorem.
e Strict and proper separation theorems.

e Dual representation of closed convex sets as
unions of points and intersection of halfspaces.
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A union of points An intersection of halfspaces

e Nonvertical separating hyperplanes.



CONJUGATE FUNCTIONS

A (—y,1)

e Conjugacy theorem: f = f**

e Support functions

A \ —
.

e Polar cone theorem: C = (C**

— Special case: Linear Farkas’ lemma



POLYHEDRAL CONVEXITY

e [Lxtreme points
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e A closed convex set has at least one extreme
point if and only if it does not contain a line.

e Polyhedral sets.
e Finitely generated cones: C = cone({a1,...,ar})

e Minkowski-Weyl Representation: A set P
is polyhedral if and only if

P = COHV({Ul, . ,vm}) +C,

for a nonempty finite set of vectors {vi,...,vm}
and a finitely generated cone C.

¢ Fundamental Theorem of LP: Let P be a
polyhedral set that has at least one extreme point.
A linear function that is bounded below over P,
attains a minimum at some extreme point of P.



BASIC CONCEPTS OF CONVEX OPTIMIZATIONM

e Waeierstrass Theorem and extensions.

e C(Characterization of existence of solutions in
terms of nonemptiness of nested set intersections.

Level Sets of f

Optimal
Solution

e Role of recession cone and lineality space.

e Partial Minimization Theorems: Charac-
terization of closedness of f(x) = inf,cpm F(z, 2)
in terms of closedness of F'.




MIN COMMON/MAX CROSSING DUALITY
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e Defined by a single set M C Rr+1,

e w* =Iinf

w)eM W

A
® ¢* =sup,epn ¢(1) =inf(ywyem{w + p'u}
e Weak duality: ¢* < w*

e Two key questions:

— When does strong duality ¢* = w* hold?

— When do there exist optimal primal and dual

solution

s?



MC/MC THEOREMS (M CONVEX, W* < )

¢ MC/MC Theorem I: We have ¢* = w* if
and only if for every sequence {(uk,wk)} Cc M
with up — 0, there holds

w* < lim inf wy,.
k— oo

¢ MC/MC Theorem II: Assume in addition
that —oo < w* and that

D = {u | there exists w € R with (u,w) € M}
contains the origin in its relative interior. Then

g* = w* and there exists yu such that q(u) = g*.

¢ MC/MC Theorem III: Similar to II but in-
volves special polyhedral assumptions.

(1) M is a “horizontal translation” of M by —P,

M =M — {(u,0) | u € P},

where P: polyhedral and M: convex.
(2) We have 1i(D) N P # @, where

~

D= {u | there exists w € R with (u,w) € M}



IMPORTANT SPECIAL CASE

e Constrained optimization: inf,cx, 4z)<o0 f(7)

e Perturbation function (or primal function)

p(u) = inf  f(z),

r€X, g(z)<u

e Introduce L(xz,u) = f(x) + p/g(x). Then

) = inf {p(u) +p'u}

inf {f(a:) + ,u'u}

weR", z€X, g(x)<u
_ {infmex L(z,p) if u >0,

— 00 otherwise.



NONLINEAR FARKAS’ LEMMA

o let X CR" f:X+— R and g; : X — R,
7 =1,...,r, be convex. Assume that

f(x) >0, Ve X with g(x) <0
Let

Q*={p|lpn>0,flx)+pwg(x)>0,VreX}.

e Nonlinear version: Then ()* is nonempty and
compact if and only if there exists a vector z € X
such that g;(z) <O forall j =1,...,r.
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{lo@)f@)) [z e X} {(g9(){f(2)) | = € X} {(g(@)|f (@) |z € X}

e Polyhedral version: (Q* is nonempty if g is
linear [g(x) = Ax — b] and there exists a vector
x € ri(X) such that Az — b <0.



CONSTRAINED OPTIMIZATION DUALITY

minimize f(x)

subject to xz € X, gij(z) <0, j=1,...,n,

where X C R", f: X — R and g; : X — R are
convex. Assume f*: finite.

e Connection with MC/MC: M = epi(p) with
p(U) — inf:l:EX,g(:c)Su f(ﬂ?)
e Dual function:

_ Jinfeex L(z,p) if p >0,
(1) { —00 otherwise

where L(x,u) = f(x) + p/g(x) is the Lagrangian
function.
e Dual problem of maximizing ¢q(u) over u > 0.

e Strong Duality Theorem: ¢* = f* and there
exists dual optimal solution if one of the following
two conditions holds:

(1) There exists z € X such that g(x) < 0.

(2) The functions g;, j = 1,...,r, are affine, and
there exists x € ri(X) such that g(z) <0.



OPTIMALITY CONDITIONS

e We have g* = f*, and the vectors x* and u* are
optimal solutions of the primal and dual problems,
respectively, iftf x* is feasible, u* > 0, and

z* € argmin Lz, p*),  pjgi(z*) =0, V.

e For the linear/quadratic program

minimize z/Qx + c'x
subject to Ax < b,

where () is positive semidefinite, (x*, u*) is a pri-
mal and dual optimal solution pair if and only if:

(a) Primal and dual feasibility holds:
Az* < b, w* >0

(b) Lagrangian optimality holds [z* minimizes
L(x, pu*) over x € R™]. (Unnecessary for LP.)

(c) Complementary slackness holds:

(Az* — b)' u* = 0,

1e., u; > 0 implies that the jth constraint is tight.
(Applies to inequality constraints only.)



FENCHEL DUALITY

e Primal problem:

minimize fi(x) + f2(x)

subject to x € R,

where fi : R — (—o0, 00| and f2 : R — (—o00, o0
are closed proper convex functions.

e Dual problem:

minimize fF(\) 4+ f3(—A)
subject to A\ € R,

where f;" and fJ are the conjugates.




CONIC DUALITY

e Consider minimizing f(x) over z € C, where f :
R" +— (—o00,00] is a closed proper convex function
and C is a closed convex cone in R™.

e We apply Fenchel duality with the definitions

fi(z) = f(z), fQ(x):{go ii;g’

e Linear Conic Programming:

minimize c'x

subject to x—be S, z e (.

e The dual linear conic problem is equivalent

to
minimize b'\

AN

subject to A—ce S+, XeC.

e Special Linear-Conic Forms:

min ¢z > max b\,
Ax=b, zeC C—A/)\Eé

min cx — max b\,
Ax—beC A'\=c, AeC

wherex € Rn, A e Rm, ce R, b e R™, A: mXxn.



SUBGRADIENTS
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df (x) = O for x € ri(dom(f)).

e Conjugate Subgradient Theorem: If f is
closed proper convex, the following are equivalent
for a pair of vectors (x,y):

(i) 2’y = f(z) + f*(y).
(i) y € 0f ().
(iii) = € af*(y).
e Characterization of optimal solution set
X* = arg mingexnn f(x) of closed proper convex f:
(a) X* =09f*(0).
(b) X* is nonempty if 0 € ri(dom(f*)).

(c) X* is nonempty and compact if and only if

0 € int(dom(f*)).



CONSTRAINED OPTIMALITY CONDITION

o Let f:R" — (—o0, 0] be proper convex, let X
be a convex subset of ", and assume that one of
the following four conditions holds:

(i) ri(dom(f)) Nri(X) # O.

(ii) f is polyhedral and dom(f) Nri(X) # @.

(iii) X is polyhedral and ri(dom(f)) N X = @.

(iv) f and X are polyhedral, and dom(f) N X # 0.

Then, a vector z* minimizes f over X iff there
exists g € Of(x*) such that —g belongs to the
normal cone Nx (x*), i.e.,

g (x —x*) >0, VaoelX.
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COMPUTATION: PROBLEM RANKING IN

INCREASING COMPUTATIONAL DIFFICULTY

e Linear and (convex) quadratic programming.

— Favorable special cases.
e Second order cone programming.
e Semidefinite programming.

e Convex programming.
— Favorable cases, e.g., separable, large sum.

— Geometric programming.

e Nonlinear/nonconvex/continuous programming.
— Favorable special cases.
— Unconstrained.

— Constrained.

e Discrete optimization/Integer programming

— Favorable special cases.

e Caveats/questions:
— Important role of special structures.
— What is the role of “optimal algorithms”?

— Is complexity the right philosophical view to
convex optimization?



DESCENT METHODS

Use vector of min

norm on —df(x); has convergence problems.

e Steepest descent method

e Subgradient method

Level sets of f

T — Qkgk

Incremental (possibly randomized) variants
for minimizing large sums.

Fixes the problems of

e-descent method:

steepest descent.



APPROXIMATION METHODS I

e Cutting plane:

e Instability problem: The method can make
large moves that deteriorate the value of f.

e Proximal Minimization method:

Y —
Y [

e Proximal-cutting plane-bundle methods:
Combinations cutting plane-proximal, with stabil-
ity control of proximal center.



APPROXIMATION METHODS II

e Dual Proximal - Augmented Lagrangian
methods: Proximal method applied to the dual
problem of a constrained optimization problem.
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Dual Proximal Iteration

Primal Proximal Iteration

e Interior point methods:
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