
LECTURE 23


LECTURE OUTLINE


Interior point methods • 

Constrained optimization case - Barrier method • 

Conic programming cases • 

Linear programming - Path following • 

All figures are courtesy of Athena Scientific, and are used with permission.



BARRIER METHOD


Inequality constrained problem • 

minimize f(x) 

subject to x ∈ X, gj (x) ≤ 0, j  = 1, . . . , r,  

where f and gj are real-valued convex and X is 
closed convex. 

We assume that the interior (relative to X) set  • 

S =
�
x ∈ X | gj (x) < 0, j  = 1, . . . , r

� 

is nonempty. 
Note that because S is convex, any feasible point • 

can be approached through S (the Line Segment 
Principle). 

The barrier method is an approximation method. • 

It replaces the indicator function of the con­• 
straint set 

δ
�
x | cl(S)

� 

by a smooth approximation within the relative in­
terior of S. 



BARRIER FUNCTIONS

• Consider a barrier function, that is continuous
and goes to ∞ as any one of the constraints gj(x)
approaches 0 from negative values.
• Examples:

�r � � �r
1

B(x) = − ln −gj(x) , B(x) = −
j=1 j=1

.
gj(x)

• Barrier method:

xk = arg min f(x) + �kB(x) , k = 0, 1, . . . ,
x∈S

where the par
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BARRIER METHOD - EXAMPLE
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1 2 2minimize f(x) =  12 

�
(x ) + (x )2

� 

subject to 2 ≤ x 1 , 

with optimal solution x∗ = (2, 0). 
Logarithmic barrier: B(x) = − ln (x 1 − 2)• 

We have xk =
�
1 +

√
1 + �k , 0

� 
from • 

1 2 2 1 xk ∈ arg m
1>
in 

2 

� 
2
1 
�
(x ) + (x )2

� 
− �k ln (x − 2)

� 

x

As �k is decreased, the unconstrained minimum • 
xk approaches the constrained minimum x∗ = (2, 0). 

As �k 0, computing xk becomes more difficult • →
because of ill-conditioning (a Newton-like method

is essential for solving the approximate problems).




CONVERGENCE


Every limit point of a sequence {xk} generated • 
by a barrier method is a minimum of the original 
constrained problem. 
Proof: Let {x} be the limit of a subsequence {xk}k∈K . 
Since xk ∈ S and X is closed, x is feasible for the 
original problem. 

If x is not a minimum, there exists a feasible 
x∗ such that f(x∗) < f(x) and therefore also an 
interior point x̃ ∈ S such that f(x̃) < f(x). By  the  
definition of xk, 

f(xk) +  �kB(xk) ≤ f(x̃) +  �kB(x̃), ∀ k, 

so by taking limit 

f(x) + lim inf �kB(xk) ≤ f(x̃) < f(x) 
k→∞, k∈K 

Hence lim infk→∞, k∈K �kB(xk) < 0. 
If x ∈ S, we  have  limk→∞, k∈K �kB(xk) = 0, 

while if x lies on the boundary of S, we  have  by  
assumption limk→∞, k∈K B(xk) =  ∞. Thus  

lim inf �kB(xk) ≥ 0, 
k→∞ 

– a contradiction. 



SECOND ORDER CONE PROGRAMMING


Consider the SOCP • 

minimize c�x


subject to Aix− bi ∈ Ci, i  = 1, . . . , m, 


nwhere x ∈ � , c is a vector in �n, and for i = 
1, . . . , m, Ai is an ni × n matrix, bi is a vector in 
�ni , and Ci is the second order cone of �ni . 

We approximate this problem with • 

m

minimize c�x + �k 

� 
Bi(Aix− bi) 

i=1 

nsubject to x ∈ �  , 

where Bi is the logarithmic barrier function: 

2 2 2Bi(y) = − ln
�
yni 

− (y1 + + yni−1)
�
, y ∈ int(Ci),· · · 


and {�k} is a positive sequence with �k 0.
→
Essential to use Newton’s method to solve the • 

approximating problems.

Interesting complexity analysis
• 



SEMIDEFINITE PROGRAMMING


Consider the dual SDP • 

maximize b�λ 

subject to C − (λ1A1 + + λmAm) ∈ D,· · ·

where D is the cone of positive semidefinite ma­
trices. 

The logarithmic barrier method uses approxi­• 
mating problems of the form 

maximize b�λ + �k ln 
�
det(C −λ1A1 −· · ·−λmAm)

� 

mover all λ ∈ � such that C − (λ1A1 + + λmAm)· · ·
is positive definite. 

Here �k > 0 and �k 0.• →
Furthermore, we should use a starting point • 

such that C − λ1A1 − · · · − λmAm is positive def­
inite, and Newton’s method should ensure that 
the iterates keep C −λ1A1 −· · ·−λmAm within the 
positive definite cone. 



LINEAR PROGRAMS/LOGARITHMIC BARRIER


Apply logarithmic barrier to the linear program
•


� 

minimize c�x 

subject to Ax = b, x ≥ 0, 
(LP) 

The method finds for various � > 0, 
� 

n
� 

x(�) = arg min F�(x) = arg min c�x − � ln xi , 
x∈S x∈S 

i=1 

where S = 
�
x | Ax = b, x > 0}. We assume that S 

is nonempty and bounded. 
As �
• →
0, x(�) follows the central path 

Point x(e) on
central path 

x• 

S 

x * (e = 0) 

c 

All central paths start at the analytic center 
n

• � � 

x∞ = arg min 
� 

ln xi , 
x∈S 

− 
i=1 

and end at optimal solutions of (LP). 



PATH FOLLOWING W/ NEWTON’S METHOD


Newton’s method for minimizing F�:• 

x̃ = x + α(x − x),


where x is the pure Newton iterate


�
∇F�(
x)�(
z − x) + 
1 

2 (z − x)�∇
2F�(x)(z − x)
�

x = a
rg mi
Az=b 

n


By straightforward calculation • 

x = x − Xq(x,� ),


Xz  
q(x,� ) =  − e, e = (1 . . . 1)�, z = c − A�λ,

� 

λ = (AX2A�)−1AX
�
Xc  − �e

�
, 

and X is the diagonal matrix with xi, i = 1, . . . , n  
along the diagonal. 

View q(x,� ) as a “normalized” Newton incement • 
[the Newton increment (x−x) transformed by X−1 

that maps x into e]. 
Consider �q(x,� )� as a proximity measure of the • 

current point to the point x(�) on the central path.




KEY RESULTS


It is sufficient to minimize F� approximately, up • 
to where �q(x,� )� < 1. 

Fact 1: If x >  0, Ax = b, and �q(x,� )� < 1,• 

c�x − min c�y ≤ �
�
n + 

√
n
�
. 

Ay=b, y≥0 

Defines a “tube of convergence”. 

x* 

x• 

S 

Central Path 

Set {x | ||q(x,e0)|| < 1} 

x(e2) 

x(e1) 

x(e0)
x0 

x2 

x1 

• Fact 2: The “termination set” 
�
x | �q(x,� )� < 

1
� 

is part of the region of quadratic convergence. 
Fact 2: If �q(x,� )� < 1, then the pure Newton • 

iterate x satisfies 

�q(x,� )� ≤ �q(x,� )� 2 < 1.




SHORT STEP METHODS


x*


Set {x | 

Set {x | || S 

Central Path 

q(x,ek)|| < 1} 

x• 

x(ek+1) 

x(ek)xk 

xk+1 

||q(x,ek+1)|| < 1} 

Idea: Use a single Newton step before changing • 
� (a little bit, so the next point stays within the 
“tube of convergence”). 
Proposition Let x >  0, Ax = b, and suppose 
that for some γ < 1 we have �q(x,� )� ≤ γ. Then  if  
� = (1  − δn−1/2)� for some δ > 0, 

γ2 + δ 
.�q(x, �)� ≤  

1 − δn−1/2 

In particular, if 
δ ≤ γ(1 − γ)(1 + γ)−1 , 

we have �q(x, �)� ≤ γ. 
Can be used to establish nice complexity results; • 

but � must be reduced VERY slowly. 



LONG STEP METHODS


Main features: • 

− Decrease � faster than dictated by complex­
ity analysis. 

− Use more than one Newton step per (approx­
imate) minimization. 

− Use line search as in unconstrained Newton’s 
method. 

− Require much smaller number of (approxi­
mate) minimizations. 

S 

(a) (b) 

Short Step method Long Step method 

The methodology generalizes to quadratic pro­• 
gramming and convex programming. 

S 
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