LECTURE 22

LECTURE OUTLINE

Review of Fenchel Duality
Review of Proximal Minimization
Dual Proximal Minimization Algorithm

Augmented Lagrangian Methods

All figures are courtesy of Athena Scientific, and are used with permission.



FENCHEL DUALITY FRAMEWORK

e Consider the problem

minimize fi(x) + f2(x)

subject to x € R,
where fi : R — (—o0, 00| and f2 : R — (—o00, o0
are closed proper convex functions.

e Line of Analysis: Convert to the equivalent
problem

minimize f1 (.2131) —+ f2 ($2>

subject to x1 =2, 1 € dom(f1), x2 € dom(f2)

e Apply convex programming duality for equality
constraints and obtain the dual problem

minimize f{(\) 4+ f3 (=)
subject to A\ € R,

where f;" and fJ are the conjugates.

e Complete symmetry of primal and dual (after a
sign change to convert the dual to minimization).



FENCHEL DUALITY THEOREM

Consider the Fenchel framework:

(a) If f*isfinite and ri dom(f1) Nri dom(fa) #
@, then strong duality holds and there exists
at least one dual optimal solution.

(b) Strong duality holds, and (x*, A*) is a primal
and dual optimal solution pair if and only if

¥ € arg min fi(z)—2'\" |, 2" € arg min fo(x)+x'\*
xeR™ zeR™

e By Fenchel inequality, the last condition is equiv-
alent to

A* € Of1(x*) lor equivalently z* € 9fF(A*)]
and

—\* € Ofa(x*) lor equivalently x* € 0f3(—\*)]



GEOMETRIC INTERPRETATION

—— Slope A*

N > Slope A

e When f; and/or f2 are differentiable, the opti-
mality condition is equivalent to

A=V fi(z*) and/or A= -V fa(z*)



RECALL PROXIMAL MINIMIZATION

e Applies to minimization of closed convex proper

f:

, 1
Tr11 = arg min  f(x) +

_ 2
rER" 2Cp |z =

where f : R — (—o00, 00], ¢ is an arbitrary start-
ing point, and {cy} is a positive scalar parameter
sequence with infx>gcp > 0.

f(zk)

Yk

e — 5|l

QC;L,

e We have f(xy) — f*. Also z; — some mini-
mizer of f, provided one exists.

e Finite convergence for polyhedral f.



DUAL PROXIMAL MINIMIZATION

e The proximal iteration can be written in the
Fenchel form: min,{ fi(x) + f2(z)} with

1

file) = f(x),  falz) = QCkaE—ﬂ?kHQ

e The Fenchel dual is

minimize fF(\) 4+ f3 (=)
subject to A € Rn

o We have f3(—\) = —zi A+ 5 ||A||2, so the dual
problem is

minimize f*(\) —zj A + C; [A][?
subject to A € R»

where f* is the conjugate of f.
e f> is real-valued, so no duality gap.

e Both primal and dual problems have a unique
solution, since they involve a closed, strictly con-
vex, and coercive cost function.



DUAL PROXIMAL ALGORITHM

e (an solve the Fenchel-dual problem instead of
the primal at each iteration:

. c
A1 = arg Inin f*(A) =z A+ ;H)\HQ (1)

e Lagragian optimality conditions:

Tp4+1 € arg max ' Ngy1 — f(x)
x n

: / 1 2
el =arg min . ' Appt, |z — |

or equivalently,

Lk — Tk+1

Ait+1 € Of (Th1), Ak41 = ‘o

e Dual algorithm: At iteration k, obtain Agi1
from the dual proximal minimization (1) and set

Tht1 = Tk — CkAk+1

e As xj converges to a primal optimal solution x*,
the dual sequence A\, converges to 0 (a subgradient
of f at x*).



VISUALIZATION

St A= %’“H/\II? f*(N)

I /
I \ >

/ T ;
Ok Slope = zk11
Slope = xk )

Primal Proximal Iteration Dual Proximal Iteration

¢ The primal and dual implementations
are mathematically equivalent and generate
identical sequences {z}.

e Which one is preferable depends on whether f
or its conjugate f* has more convenient structure.

e Special case: When —f is the dual function
of the constrained minimization ming,y<o F'(x),
the dual algorithm is equivalent to an important
general purpose algorithm: the Augmented La-
grangian method.

e This method (to be discussed shortly) aims to
find a subgradient of the primal function p(u) =
ming <, £'(z) at u = 0 (i.e., a dual optimal so-
lution).



AUGMENTED LAGRANGIAN METHOD

e Consider the convex constrained problem

minimize f(x)
subject to x € X, FEx =d
e Primal and dual functions:
p(v) = inf f(x), q(\) = inf f(a)+N(Ea—d)

reX, reX
FEx—d=wv

e Assume p: closed, so (¢, p) are “conjugate” pair.

e Proximal algorithms for maximizing g:

Ag+1 = arg max q(\) — A — A||?

L
peRm™ 2Cp
Vg+1 = arg min  p(v) + Av + “k |v]2
veR™ 2
Dual update: A\x11 = Ax + crvk11

e Implementation:

Vikt1 = Brgi1 —d, Tpi1 € arg anIél)I(l Le, (x, Ai)

where L. is the Augmented Lagrangian function

Le(x,\) = f(a) + N(Bx —d) + _ | Ex — d|]



GRADIENT INTERPRETATION

e )i can be viewed as a gradient:

0c2) = ing {7(@) 4 llo <12}

reR” 2c

(For geometrical insight, consider the case where
f is linear in the following figure.)

\

6e(z) = 5oflo I

|
2z (2 x* T

e So the dual update xp11 = T — cg ka1 can
be viewed as a gradient iteration for minimizing
¢c(z) (which has the same minima as f).

e The gradient is calculated by the dual prox-
imal minimization. Possibilities for faster meth-
ods (e.g., Newton, Quasi-Newton). Useful in aug-
mented Lagrangian methods.



PROXIMAL LINEAR APPROXIMATION

e Convex problem: Min f : R — R over X.

e Proximal outer linearization method: Same
as proximal minimization algorithm, but f is re-
placed by a cutting plane approximation Fj:

, 1
Ti+1 € arg min Fi.(x) + 20 |z — 212
Lk — Tk+1

Aot1 =
Ck

where g; € df(x;) for i < k and
Fy(z) = max f(zo)+(z—x0)'go, - .-, f(zr)+H(x—21) 9r +0x(2)

e Proximal Inner Linearization Method (Dual
proximal implementation): Let F}* be the con-
jugate of Fj. Set

: Ck
A Fr(\) — 2/ A A2
p+1 € arg min - Fp(d) — 2 A+ A

Th4+1 = Tk — CkAk+1

Obtain gx11 € Jf(xk+1), either directly or via
g1 € arg max zj . A — f*(A)

e Add gii1 to the outer linearization, or xx11 to
the inner linearization, and continue.



PROXIMAL INNER LINEARIZATION

e It is a mathematical equivalent dual to the outer
linearization method.

' T 0' \ == )\»
/

Slope = x

e Here we use the conjugacy relation between
outer and inner linearization.

e Versions of these methods where the proxi-
mal center is changed only after some “algorithmic
progress” is made:

— The outer linearization version is the (stan-

dard) bundle method.

— The inner linearization version is an inner
approximation version of a bundle method.
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