
LECTURE 20 

LECTURE OUTLINE 

•	 Approximation methods 

•	 Cutting plane methods 

•	 Proximal minimization algorithm


•	 Proximal cutting plane algorithm 

Bundle methods • 

All figures are courtesy of Athena Scientific, and are used with permission.



APPROXIMATION APPROACHES


• Approximation methods replace the original 
problem with an approximate problem. 

• The approximation may be iteratively refined, 
for convergence to an exact optimum. 

•	 A partial list of methods: 
− Cutting plane/outer approximation. 
− Simplicial decomposition/inner approxima­

tion. 
− Proximal methods (including Augmented La­

grangian methods for constrained minimiza­
tion). 

− Interior point methods. 

•	 A partial list of combination of methods: 
− Combined inner-outer approximation. 
− Bundle methods (proximal-cutting plane). 
− Combined proximal-subgradient (incremen­

tal option). 



SUBGRADIENTS-OUTER APPROXIMATION


Consider minimization of a convex function f :• 
�n �→ �, over a closed convex set X. 

• We assume that at each x ∈ X, a subgradient 
g of f can be computed. 

We have • 

f(z) ≥ f(x) +  g�(z − x), ∀ z ∈ �n, 

so each subgradient defines a plane (a linear func­

tion) that approximates f from below. 

• The idea of the outer approximation/cutting 
plane approach is to build an ever more accurate 
approximation of f using such planes. 

x∗ 



CUTTING PLANE METHOD 

•	 Start with any x0 ∈ X. For k ≥ 0, set 

xk+1 ∈ arg min Fk(x), 
x∈X 

where 

Fk(x) =  max
�
f(x0)+(x−x0)

�g0, . . . , f(xk)+(x−xk)�gk

� 

and gi is a subgradient of f at xi. 

x∗ 

• Note that Fk(x) ≤ f(x) for all x, and that 
Fk(xk+1) increases monotonically with k. These  
imply that all limit points of xk are optimal. 

Proof: If xk → x then Fk(xk) → f(x), [otherwise 
there would exist a hyperplane strictly separating 
epi(f) and (x, limk→∞ Fk(xk))]. This implies that 
f(x) ≤ limk→∞ Fk(x) ≤ f(x) for all x. Q.E.D. 



CONVERGENCE AND TERMINATION


We have for all k• 

Fk(xk+1) ≤ f∗ ≤ min f(xi)
i≤k 

• Termination when mini≤k f(xi)−Fk(xk+1) comes 
to within some small tolerance. 

• For f polyhedral, we have finite termination 
with an exactly optimal solution. 

x∗ 

• Instability problem: The method can make 
large moves that deteriorate the value of f . 

• Starting from the exact minimum it typically 
moves away from that minimum. 



VARIANTS


• Variant I: Simultaneously with f , construct 
polyhedral approximations to X. 

• Variant II: Central cutting plane methods 

F1(x) 

Variant III: Proximal methods - to be dis­• 
cussed next. 



PROXIMAL/BUNDLE METHODS 

• Aim to reduce the instability problem at the 
expense of solving a more difficult subproblem. 

•	 A general form: 

xk+1 ∈ arg min 
�
Fk(x) +  pk(x)

� 

x∈X 

Fk(x) = max
�
f(x0)+(x−x0)

�g0, . . . , f(xk)+(x−xk)�gk

� 

1 2 pk(x) =  
2ck 

�x− yk� 

where ck is a positive scalar parameter.


We refer to pk(x) as the proximal term, and to
• 
its center	yk as the proximal center . 



PROXIMAL MINIMIZATION ALGORITHM


Starting point for analysis: A general algorithm • 
for convex function minimization 

1 
xk+1 ∈ arg min 

�
f(x) +  

k 
�x− xk� 2

� 

x∈�n 2c

n− f : � �→ (−∞,∞] is closed proper convex 
− ck is a positive scalar parameter 
− x0 is arbitrary starting point 

f(xk) 

Convergence mechanism: • 

1 2γk = f(xk+1) +  
2ck 

�xk+1 − xk� < f(xk). 

Cost improves by at least 2c
1 
k 
�xk+1 −xk�2, and this 

is sufficient to guarantee convergence. 



RATE OF CONVERGENCE I 

Role of penalty parameter ck:• 

xk+2 

Role of growth properties of f near optimal • 
solution set: 

xk+2 



RATE OF CONVERGENCE II


Assume that for some scalars β > 0, δ > 0, and • 
α ≥ 1, 

nf∗ + β
�
d(x)

�α ≤ f(x), ∀ x ∈ �  with d(x) ≤ δ 

where 
d(x) =  min  x − x∗�

x∗∈X∗ 
�

i.e., growth of order α from optimal solution set 
X∗. 

If α = 2  and limk→∞ ck = c̄, then  • 

d(xk+1) 1 
lim sup 

d(xk) 
≤ 

1 +  βc̄k→∞ 

linear convergence. 
If 1 < α < 2, then  • 

d(xk+1)
lim sup �

d(xk)
�1/(α−1) 

< ∞
k→∞ 

superlinear convergence. 



FINITE CONVERGENCE 

Assume growth order α = 1:• 

f∗ + βd(x) ≤ f(x), ∀ x ∈ �  n , 

e.g., f is polyhedral. 

Method converges finitely (in a single step for • 
c0 sufficiently large). 

x2 = x∗ 



PROXIMAL CUTTING PLANE METHODS


Same as proximal minimization algorithm, but • 
f is replaced by a cutting plane approximation 
Fk: 

1 
xk+1 ∈ arg min 

�
Fk(x) +  

2ck 
�x− xk� 2

� 

x∈X 

where 

Fk(x) =  max
�
f(x0)+(x−x0)

�g0, . . . , f(xk)+(x−xk)�gk

� 

Drawbacks: • 

(a)	 Hard stability tradeoff: For large enough 
ck and polyhedral X, xk+1 is the exact min­
imum of Fk over X in a single minimization, 
so it is identical to the ordinary cutting plane 
method. For small ck convergence is slow. 

(b)	 The number of subgradients used in Fk 

may become very large; the quadratic pro­
gram may become very time-consuming. 

These drawbacks motivate algorithmic variants,
• 
called bundle methods. 



BUNDLE METHODS 

Allow a proximal center yk = xk:• �

xk+1 ∈ arg min 
�
Fk(x) +  pk(x)

� 
x∈X 

Fk(x) = max
�
f(x0)+(x−x0)

�g0, . . . , f(xk)+(x−xk)�gk

� 

1 2 pk(x) =  
2ck 

�x− yk� 

Null/Serious test for changing yk: For some • 
fixed β ∈ (0, 1) 

� 
xk+1 if f(yk) − f(xk+1) ≥ βδk, 

yk+1 = 
yk if f(yk) − f(xk+1) <  βδk, 

δk = f(yk) − 
�
Fk(xk+1) +  pk(xk+1)

� 
> 0 
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