LECTURE 19

LECTURE OUTLINE

e Return to descent methods

e Fixing the convergence problem of steepest de-
scent

e c-descent method

e [xtended monotropic programming

All figures are courtesy of Athena Scientific, and are used with permission.



IMPROVING STEEPEST DESCENT

e (Consider minimization of a convex function f :
R — R, over a closed convex set X.

e Return to iterative descent: Generate {xy} with

fler) < flar)

(unless zj, is optimal).

e If f is differentiable, the gradient/steepest de-
scent method is

Try1 =Tk — gV f(Tg)

Has good convergence for a; sufficiently small or
optimally chosen.

e If f is nondifferentiable, the steepest descent
method is

Tk+1 = Tk — Opgg

where gy, is the vector of minimum norm on 0f (xx)
... but has convergence difficulties.

e We will discuss another method, called e-descent:

Th+1 = Tk — OkJk

where gy is the vector of minimum norm on 0. f ().

T+ Gvee the convercence AdifRlciiltieoge



REVIEW OF «SUBGRADIENTS

e For a proper convex f : R" — (—o0,00] and
e > 0, we say that a vector ¢ is an e-subgradient
of f at a point z € dom(f) if

f(z) > f(x)+(z—x)'g—ck, V 2z € Rn
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e The e-subdifferential Ocf(x) is the set of all e-
subgradients of f at x. By convention, 0. f(x) = @
for ¢ dom(f).

e We have N¢ o0 f(z) = 0f(x) and

O, f(x) COe, f(x) if0<er <eg



e-SUBGRADIENTS AND CONJUGACY

e For any x € dom(f), consider x-translation of
f, i.e., the function f, given by

fz(d) = f(x +d) — f(x), vV deRn

and its conjugate

f&(g) = sup {d'g—f(z+d)+f(z)} = f*(9)+f(z)—g'x

deRn

e We have

g € 0f(x) iff sup {d’g flz+d)+f(x }<O
deRn

so 0f(x) is the 0-level set of f;:

= {9 f2(g) <0}.

Similarly, 0. f(x) is the e-level set of f;:

={g| f2(g9) <€}



e-SUBDIFFERENTIALS AS LEVEL SETS

e We have

= {91 () +f(@)—g'w < e} ={g]| fi(9) < ¢}

) fa(d AConjugate
Translated f‘; (g)
Epigraph L )
of f
L_L N .

(a) i I
A f.(d) k£ (9)
o 1 /
—— R
0 g
(b)

—
d
Q}:f)(x)
_’-’
------ ~f(x) - (cl )(x)
P
0 g
(c)

o If f is closed

sup {—f2(9)} = f*(0) = f2(0) = 0

geER™

so O f(x) # O for every x € dom(f) and € > 0.



PROPERTIES OF «-SUBDIFFERENTIALS

e Let f: closed proper convex, x € dom(f), € > 0.
e Then O.f(x) is nonempty and closed.

e O.f(x) is compact iff fF has no nonzero di-
rections of recession. True if f is real-valued or
z € int(dom(f)) [support fn of dom(f,) is reces-
sion fn of fx].

e In one dimension: g € O.f(z) i fff(z + ad) >
f(x) — e+ adg for all d € ®» and a > 0.

e So g € O.f(x) iff the line with slope d’g that
passes through f(x) — € lies under f(x + ad).

AFd(a) = f(z + ad)

Slope = infyep, () d'g

Slope = SupPyea, f(z) 49

e Therefore,
d) —
sup d'g = inf fz +ad) = f(z) +
g€d. f () a>0 Q

This formula for the support function op_¢(s)(d)
can be shown also in multiple dimensions.



e-DESCENT PROPERTIES

e For f: closed proper convex, by definition, 0 €
Ocf(x)iff

fla) < inf f(2)+e

e For f: closed proper convex and d € R,

d) —
sup d'g = int flz +ad) = f(z) +
g€ f(x) a>0 e

SO

infoso f(z+ad) < f(x) —e iff  sup d'g<0

gEDe f ([B)
ey i +ad) A
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f(m)—e——i ; flz) —e
Slope = 0
0 = > 0 Or

o If 0 ¢ Ocf(x), we have sup ¢y s,y d'g <0 for

= arg min :
g =arg min ||

(Projection Th.), so infaso f(x — ag) < f(z) — €.



e-DESCENT METHOD

e Method to minimize closed proper convex f:

LThk+1 = Tk — kg

where

—(gr = ar min :
9k ggeaef(:ck) gl

and a 1S a positive stepsize.

o If gp =0, ie., 0 € O.f(xk), then z is an -
optimal solution.

o If gi # 0, choose aj that reduces the cost func-
tion by at least e, i.e.,

fxpa1) = f(ax — argr) < f(ag) — €

e Drawback: Must know 0. f(zy).

e Motivation for a variant where O f(xx) is ap-
proximated by a set A(xj) that can be computed
more easily than 0. f(xy).

e Then use

= arg min :
9k ggeA(m) gl

[proiect on A(xz:) rather than 0. f(x)].



e-DESCENT - OUTER APPROXIMATION

e Here O.f(xr) is approximated by a set A(x)
such that

Ocf(xr) C A(zk) C Oyef(xk),

where v is a scalar with v > 1.

e Then the method terminates with a ye-optimal
solution, and effects at least e-reduction on f oth-
erwise.

e Example of outer approximation for sum case

f — fl T T fm
Take
A(x) = (D fi(x) + - -+ e fn (),

based on the fact

Ocf(x) C cl(é’eﬁ(x) 4 5’€fm(cc)) C Omef(x)

e Application to separable problems where each
Oc fi(x) is a one-dimensional interval. Then to find
an e-descent direction, we must solve a quadratic
prosrammine /oroiection nroblem



EXTENDED MONOTROPIC PROGRAMMING

o Let
— = (x1,...,Tm) with z; € R
— fi: R"i — (—o00, 0] is closed proper convex
— S is a subspace of Rrit-+nm

e Extended monotropic programming problem:

m
minimize Z fi(x;)
i=1

subject to x € S

e Monotropic programming is the special case
where each z; is 1-dimensional.

e Models many important optimization problems
(linear, quadratic, convex network, etc).

e Has a powertul symmetric duality theory.



DUALITY

e (Convert to the equivalent form

m
minimize Z fi(z:)
i=1
subject to z; =x;, 1=1,...,m, xr eSS

e Assigning a dual vector \; € R™ to the con-
straint z; = x;, the dual function is

= inf A’ inf 1 fi(zi) — Az

) = E e+ D0 i () )
Yt () if de S
—0 otherwise,

where q;(\i) = inf_end fi(zi) — Nzi} = —fF (M),

e The dual problem is the (symmetric) extended
monotropic program

minimize Z fr (i)
i=1

subject to A € S+



OPTIMALITY CONDITIONS

e Assume that —oo < ¢* = f* < oo. Then
(x*, A*) are optimal primal and dual solution pair
if and only if

r* € S\ e S, Nedfi(xr), Vi

e Specialization to the monotropic case (n; =
1 for all 7): The vectors x* and A\* are optimal
primal and dual solution pair if and only if

x* € S\ *c S, (X, Af) ely, Vi
where

= {(i, Xi) | @i € dom(fi), f; (zi) < Xi < fi" (i)}

e Interesting application of these conditions to
electrical networks.



STRONG DUALITY THEOREM

e Assume that the extended monotropic program-
ming problem is feasible, and that for all feasible
solutions x, the set

SJ‘ + aeDl,e(x) + -+ Dm,e(x)
is closed for all ¢ > 0, where
Die(z) ={(0,...,0,X:,0,...,0) | \i € O fi(zi)}

Then g* = f*.

e An unusual duality condition. It is satisfied if
each set O fi(x) is either compact or polyhedral.
Proof is also unusual - uses the e-descent method!

e Monotropic programming case: If n; = 1,
D; ¢(x) is an interval, so it is polyhedral, and ¢* =
f*.

e There are some other cases of interest. See the
text.

e The monotropic duality result extends to con-
vex separable problems with nonlinear constraints.
(Hard to prove ...)
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