
LECTURE 19


LECTURE OUTLINE


Return to descent methods • 

• Fixing the convergence problem of steepest de­
scent 

�-descent method • 

• Extended monotropic programming 

All figures are courtesy of Athena Scientific, and are used with permission.



IMPROVING STEEPEST DESCENT 

Consider minimization of a convex function f :
• 
�n �→ �, over a closed convex set X. 

• Return to iterative descent: Generate {xk} with 

f(xk+1) < f(xk) 

(unless xk is optimal). 

• If f is differentiable, the gradient/steepest de­
scent method is 

xk+1 = xk − αk∇f(xk) 

Has good convergence for αk sufficiently small or 
optimally chosen. 

• If f is nondifferentiable, the steepest descent 
method is 

xk+1 = xk − αkgk 

where gk is the vector of minimum norm on ∂f(xk) 
... but has convergence difficulties. 

• We will discuss another method, called �-descent:


xk+1 = xk − αkgk


where gk is the vector of minimum norm on ∂�f(xk).

It fixes the convergence difficulties. 



• For a proper convex f : � �

REVIEW OF �-SUBGRADIENTS


n → (−∞,∞] and 
� > 0, we say that a vector g is an �-subgradient 
of f at a point x ∈ dom(f) if  

f(z) ≥ f(x) + (z − x)�g − �, ∀ z ∈ �n 

� 

• The �-subdifferential ∂�f(x) is the set of all �­
subgradients of f at x. By convention, ∂�f(x) =  Ø 
for x /∈ dom(f). 

We have ∩� 0∂�f(x) =  ∂f(x) and • ↓

∂�1 f(x) ⊂ ∂�2 f(x)  if 0  < �1 < �2 



�-SUBGRADIENTS AND CONJUGACY 

• For any x ∈ dom(f), consider x-translation of 
f , i.e., the function fx given by 

nfx(d) =  f(x + d) − f(x), ∀ d ∈ �

and its conjugate 

fx
�(g) =  sup  

�
d�g−f(x+d)+f(x)

� 
= f�(g)+f(x)−g�x 

d∈�n 

We have • 

g ∈ ∂f(x)  iff  sup  
�
d�g−f(x+d)+f(x)

� 
≤ 0, 

d∈�n 

so ∂f(x) is the 0-level set of fx
�: 

∂f(x) =  
�
g | fx

�(g) ≤ 0
�
. 

Similarly, ∂�f(x) is the �-level set of fx
�: 

∂�f(x) =  
�
g | fx

�(g) ≤ �
� 



�-SUBDIFFERENTIALS AS LEVEL SETS 

We have • 

∂�f(x) =  
�
g | f�(g)+f(x)−g�x ≤ �

� 
= 

�
g | fx

�(g) ≤ �
� 

Conjugate 

d

fx(d) 
fx 

�(g)Translated 
Epigraph
of f 

0 0 g(a) 

fx(d) fx 
�(g) 

0 d 

0 g 

(b) 
fx(d) fx 

�(g) 

0 d 
f(x) - (cl f)(x) 

f(x) - (cl f)(x) 

0 g 
(c) 

If f is closed • 

sup 
�
−fx

�(g)
� 

= fx
��(0) = fx(0) = 0 

g∈�n 

so ∂�f(x) =� Ø for every x ∈ dom(f) and � > 0. 



PROPERTIES OF �-SUBDIFFERENTIALS


• Let	f : closed proper convex, x ∈ dom(f), � > 0.


• Then ∂�f(x) is nonempty and closed. 

• ∂�f(x) is compact iff fx
� has no nonzero di­

rections of recession. True if f is real-valued or 
x ∈ int

�
dom(f)

� 
[support fn of dom(fx) is  reces­

sion fn of fx
�]. 

• In one dimension: g ∈ ∂�f(x) i  fff(x + αd) ≥
nf(x) −	� + αd�g for all d ∈ � and α > 0. 

• So g ∈ ∂�f(x) iff the line with slope d�g that 
passes through f(x) − � lies under f(x + αd). 

� 

Fd(α) = f(x + αd) 

•	 Therefore, 

sup d�g = inf  
f(x + αd) − f(x) +  � 

g∈∂�f (x) α>0	 α 

This formula for the support function σ∂�f (x)(d) 
can be shown also in multiple dimensions. 



�-DESCENT PROPERTIES


• For	f : closed proper convex, by definition, 0 ∈

∂�f(x) i  ff  

f(x) ≤ inf f(z) +  � 
z∈�n 

•	 For f : closed proper convex and d ∈ �n, 

sup d�g = inf  
f(x + αd) − f(x) +  � 

g∈∂�f (x) α>0	 α 

so 

infα>0 f(x + αd) < f(x) − � iff sup d�g < 0 
g∈∂�f(x) 

� � 

α 

• If 0 ∈/ ∂�f(x), we have supg∈∂�f(x) d�g < 0 for 

g = arg min , 
g∈∂�f (x) 

�g�

(Projection Th.), so infα>0 f(x− αg) < f(x) − �.




�-DESCENT METHOD


• Method to minimize closed proper convex f : 

xk+1 = xk − αkgk 

where 
−gk = arg min 

g∈∂�f (xk) 
�g�, 

and αk is a positive stepsize. 

• If gk = 0, i.e., 0 ∈ ∂�f(xk), then xk is an �­
optimal solution. 

If gk = 0, choose αk that reduces the cost func­• �
tion by at least �, i.e.,  

f(xk+1) =  f(xk − αkgk) ≤ f(xk) − � 

• Drawback: Must know ∂�f(xk). 

• Motivation for a variant where ∂�f(xk) is ap­
proximated by a set A(xk) that can be computed 
more easily than ∂�f(xk). 

Then use • 

gk = arg min 
g∈A(xk ) 

�g�, 

[project on A(xk) rather than ∂�f(xk)]. 



�-DESCENT - OUTER APPROXIMATION


• Here ∂�f(xk) is approximated by a set A(x) 
such that 

∂�f(xk) ⊂ A(xk) ⊂ ∂γ�f(xk), 

where γ is a scalar with γ > 1. 

• Then the method terminates with a γ�-optimal 
solution, and effects at least �-reduction on f oth­
erwise. 

• Example of outer approximation for sum case


f = f1 + + fm· · ·

Take 

A(x) = cl
�
∂�f1(x) +  + ∂�fm(x)

�
,· · ·

based on the fact 

∂�f(x) ⊂ cl
�
∂�f1(x) +  + ∂�fm(x)

� 
⊂ ∂m�f(x)· · · 


• Application to separable problems where each 
∂�fi(x) is a one-dimensional interval. Then to find 
an �-descent direction, we must solve a quadratic 
programming/projection problem. 



EXTENDED MONOTROPIC PROGRAMMING


Let • 

− x = (x1, . . . , xm) with  xi ∈ �ni 

− fi : �ni �→ (−∞,∞] is closed proper convex 

− S is a subspace of �n1+···+nm 

• Extended monotropic programming problem:


m

minimize 
� 

fi(xi) 
i=1 

subject to x ∈ S 

• Monotropic programming is the special case 
where each xi is 1-dimensional. 

• Models many important optimization problems 
(linear, quadratic, convex network, etc). 

• Has a powerful symmetric duality theory. 



DUALITY


• Convert to the equivalent form 

m

minimize 
� 

fi(zi) 
i=1 

subject to zi = xi, i  = 1, . . . ,m, x ∈ S 

• Assigning a dual vector λi ∈ �ni to the con­
straint zi = xi, the dual function is 

m

q(λ) =  inf  λ�x + 
� 

inf 
�
fi(zi) − λ�izi

� 

x∈S
i=1 

zi∈�ni 

� �m
i=1 qi(λi) if  λ ∈ S⊥,= −∞ otherwise, 

where qi(λi) = infzi∈�
�
fi(zi) − λ�izi

� 
= −f�(λi).i 

• The dual problem is the (symmetric) extended 
monotropic program 

m

minimize 
� 

fi
�(λi) 

i=1 

subject to λ ∈ S⊥ 



OPTIMALITY CONDITIONS


• Assume that −∞ < q∗ = f∗ < ∞. Then  
(x∗, λ∗) are optimal primal and dual solution pair 
if and only if 

x∗ ∈ S,λ ∗ ∈ S⊥, λi 
∗ ∈ ∂fi(x∗ 

i ), ∀ i 

• Specialization to the monotropic case (ni = 
1 for all i): The vectors x∗ and λ∗ are optimal 
primal and dual solution pair if and only if 

x∗ ∈ S,λ ∗ ∈ S⊥, (x∗ 
i , λ

∗ 
i ) ∈ Γi, ∀ i 

where 

Γi = 
�
(xi, λi) | xi ∈ dom(fi), fi

−(xi) ≤ λi ≤ f+(xi)
�

i 

• Interesting application of these conditions to 
electrical networks. 



STRONG DUALITY THEOREM


• Assume that the extended monotropic program­
ming problem is feasible, and that for all feasible 
solutions x, the  set  

S⊥ + ∂�D1,�(x) +  + Dm,�(x)· · ·

is closed for all � > 0, where 

Di,�(x) =  
�
(0, . . . , 0, λi, 0, . . . , 0) | λi ∈ ∂�fi(xi)

� 

Then q∗ = f∗. 

• An unusual duality condition. It is satisfied if 
each set ∂�fi(x) is either compact or polyhedral. 
Proof is also unusual - uses the �-descent method! 

• Monotropic programming case: If ni = 1, 
Di,�(x) is an interval, so it is polyhedral, and q∗ = 
f∗. 

There are some other cases of interest. See the • 
text. 

• The monotropic duality result extends to con­
vex separable problems with nonlinear constraints. 
(Hard to prove ...) 
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