LECTURE 18

LECTURE OUTLINE

Approximate subgradient methods
e-subdifferential
e-subgradient methods

Incremental subgradient methods

All figures are courtesy of Athena Scientific, and are used with permission.



APPROXIMATE SUBGRADIENT METHODS

e (Consider minimization of

f(:l?) = Sup ¢(x7 Z)

ze/

where Z C ™ and ¢(-, z) is convex for all z € Z
(dual minimization is a special case).

e To compute subgradients of f at z € dom(f),
we find z, € Z attaining the supremum above.
Then

gz € 0P(x, 2z) = gz € 0f(x)

e T'wo potential areas of difficulty:

— For subgradient method, we need to solve
exactly the above maximization over z € Z.

— For steepest descent, we need all the subgra-
dients, and then there are convergence diffi-
culties to contend with.

e In this lecture we address the first difficulty, in
the next lecture the second.

e We consider methods that use “approximate”
subgradients.



e-SUBDIFFERENTIAL

e We enlarge 0f(x) so that we take into account
“nearby” subgradients.

e Fot a proper convex f : R? +— (—o0,00] and
e > 0, we say that a vector ¢ is an e-subgradient
of f at a point z € dom(f) if

f(z) > f(x)+(z—x)'g—¢, V z € jn
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o The e-subdifferential Ocf(x) is the set of all e-
subgradients of f at x. By convention, 0. f(x) = @
for ¢ dom(f).

e We have N¢ o0 f(z) = 0f(x) and

O, f() C O, f(x) if0<er <eg



PROPERTIES OF «-SUBDIFFERENTIALS

e Assume that f is closed proper convex, € > 0.

e O.f(r) is nonempty and closed for all x €
dom(f). (Use nonvertical separating hyperplane
theorem.)

() A

Slopes:| endpoints of O, f ()

e O.f(x) is compact iff & € int(dom(f)). True in
particular, if f is real-valued.

e Neighborhood/continuity property: Sub-
gradients at nearby points are e-subgradients at
given point (for sufficiently large ¢).

e The support function of O f(x) is

o [+ ay) — f(z) +e
0a.f(x)(y) = sup y'g= inf
F) g€ f(x) a>0 .



CALCULATION OF AN «SUBGRADIENT

e (Consider minimization of

f(il?) = Sup ¢(x7 Z)a (1)

zE/

where x € ", z € R™, Z is a subset of ™, and
¢ : R x R™ — (—o00, 0] is a function such that
®(-, z) is convex and closed for each z € Z.

e How to calculate e-subgradient at z € dom(f)?

o Let z, € Z attain the supremum within ¢ > 0
in Eq. (1), and let g, be some subgradient of the
convex function ¢(-, zz).

e For all y € R, using the subgradient inequality,

fly) = Sup o(y,2) > ¢y, 2z)
> ¢, 20) + 9oy — ) 2 f(z) — €+ 92(y — 7)

i.e., g 1s an e-subgradient of f at x, so

Qb(CC,Zg;) Z Sup gb(ZC,Z) — € and gz € agb(ajvzx)
z€Z

- gz € O f(x)



e-SUBGRADIENT METHOD

e (Can be viewed as an approximate subgradient
method, using an e-subgradient in place of a sub-
gradient.

e Problem: Minimize convex f : " — R over a
closed convex set X.

e Method:

Trp+1 = Px(Tr — argr)

where g; is an €x-subgradient of f at xp, ai is a

positive stepsize, and Px(-) denotes projection on
X.

e Can be viewed as subgradient method with “er-
rors’ .



CONVERGENCE ANALYSIS

e Basic inequality: If {z} is the e-subgradient
method sequence, for all y € X and £ > 0

|zt —yll* < lor—yll* —2an (f (1)~ f (y)—ex) +arllgx|

e Replicate the entire convergence analysis for
subgradient methods, but carry along the €x terms.

e Example: Constant ap = «, constant €, = e.
Assume ||gx|| < ¢ for all k. For any optimal x*,

lzkr1—a|1? < |lep—a*|2=2a(f (2x) — f*—€) +a?c?,

so the distance to x* decreases if

2(f(zx) — f* —¢)

D<a< 5
C

or equivalently, if xj is outside the level set

{x ’ f(a;)Sf*+e+a§2}

e Example: If o, — 0, >, ar — 00, and € — ¢,
we get convergence to the e-optimal set.



INCREMENTAL SUBGRADIENT METHODS

e (Consider minimization of sum

flz) = Zfz‘(flf)

e Often arises in duality contexts with m: very
large (e.g., separable problems).

e Incremental method moves x along a sub-
gradient g; of a component function f; NOT
the (expensive) subgradient of f, which is ) . g;.

e View an iteration as a cycle of m subiterations,
one for each component f;.

e Let x; be obtained after k£ cycles. To obtain
Tr+1, do one more cycle: Start with ¢g = xg, and
set Tr11 = Ym, after the m steps

Y = Px (Vi1 — axgi), i=1,...,m

with g; being a subgradient of f; at ;1.

e Motivation is faster convergence. A cycle
can make much more progress than a subgradient
iteration with essentially the same computation.



CONNECTION WITH «SUBGRADIENTS

e Neighborhood property: If x and x are
“near” each other, then subgradients at x can be
viewed as e-subgradients at x, with ¢ “small.”

o If g € 0f(x), we have for all z € R,

f(z) 2 f(z) + g'(z — o)
fla)+9'(z—x)+ fz) - f(z) + ¢'(z — )
f

() +9'(2 —z) — ¢,

AVARRAVARRAV]

where € = |f(z) — f(z)| + |lg]| - [[x — z|. Thus,
g € O.f(x), with e: small when z is near x.

e The incremental subgradient iter. is an e-subgradient
iter. with € = €1 + - - - + €,,, Where ¢; is the “error”
in ith step in the cycle (¢;: Proportional to ay).

e Use

Ocy f1(2) + -+ + Oe,, fm(x) C O f(),

where € = €1 + -+ + €,,, to approximate the e-
subdifferential of the sum f=>"", f;.

e Convergence to optimal if a, — 0, ), oy — 00.



CONVERGENCE OF INCREMENTAL SUBGR.

e Problem

e Incremental subgradient method

4+ .
Thtl = UYmk, Yik = |Vic1k—rgik] ,i=1,...,m

starting with ¥g = xy, where g; . 1s a subgradi-
ent of f; at ¥;_1 k.

e Analysis parallels/extends the one for nonincre-
mental subgradient methods

e Key Lemma: For all y € X and &,
zk1=yI? < llek—yl[2 =20 (f(26) = f(y)) +aiC2,
where C = 2211 C; and

C; = Sgp{HgII | g € 0fi(xr) UOfi(Yim1k)}



ERROR BOUND: CONSTANT STEPSIZE

e For o = «, we have

a(C? am? Cg

inf flan) < frt+ O < o

k>0 2

where

C() — maX{C1, Ce e Cm}

is the max component subgradient bound. (Com-
parable error to the nonincremental method.)

e Sharpness of the estimate: There are prob-
lems for which the upper bound is (almost) sharp
with cyclic order of processing the component func-
tions (see the end-of-chapter problems).

e Lower bound on the error: There is a prob-
lem, where even with best processing order,

oszg

e+ < inf f(zk)

~ k>0

where

Co — max{C’l, Ce e Cm}

e (QQuestion: Is it possible to improve the upper
bound by optimizing the order of processing the
component functions?



RANDOMIZED ORDER METHODS

Tht1 = |Tk — Oékg(Wk,xk)]+

where wy 1s a random variable taking equiprobable
values from the set {1,...,m}, and g(wg, k) is a
subgradient of the component f,, at z.

e Assumptions:

(a) {wg} is a sequence of independent random
variables. Furthermore, the sequence {wy}
is independent of the sequence {x}.

(b) The set of subgradients {g(wg,zx) | k =
0,1,.. } is bounded, i.e., there exists a pos-
itive constant Cy such that with prob. 1

|g(wk, xx)|| < Co, Vk>0

e Stepsize Rules:
— Constant: o = «
— Diminishing: >, ap =00, >, ()% < o0

— Dynamic



RANDOMIZED METHOD W/ CONSTANT STEP
e With probability 1

osz’2
112% (xk) 2

A better/sharp error bound!
Proof: By adapting key lemma, for all y € X, k

|zre1=yl1? < [lee—yl2—20(fur (2r) = fur (y)) +02CF

Take conditional expectation with F, = {xo,..., T}

E{llzrrr —yll? | Fr} < ||z — yl[?
—QOzE{fwk T —fwk( ) ‘fk} +oz2C§

= |lzx — yl]* - 2042 (filzw) — fi(y)) + a2C

= [fox — 2 - ij“ (F(a) — 1) +02C3,

where the first equality follows since wy takes the
values 1,..., m with equal probability 1/m.



PROOF CONTINUED 1

e ['ix v > 0, consider the level set L. defined by

amC§ }

L7:{$€X|f(x)<f*+3—|— 5

and let y, € Ly be such that f(yy) = f* + }Y

Define a new process {Zx} as follows

A A + . A
4 _ { [:ck — ag(wk,a:k)] if 2, & L,
k+1 :
UYny otherwise,

where £9g = x9. We argue that {Z;} (and hence

also {xr}) will eventually enter each of the sets
L.
Using key lemma with y = y-, we have

E{||Zrs1 — vl 12 | Fr} < 1@ — y31? — 2,
where

b= (@) = ) —02CF il dx & Ly,
0 if ), = 1.



PROOF CONTINUED II

o If 2y ¢ L., we have

20 A
o= (flan) — f(y) — a2C3
2
Z204 (f* 2 am(C§ 1 1)_04208
m 2 ¥
. 2a
=

Hence, as long as 2y ¢ L~, we have

2

E{l|Zn+1 — yo|1? | Fi} < |12k — yy |12 — ey
This, cannot happen for an infinite number of it-
erations, so that zp € L. for sufficiently large
k (the Supermartingale Convergence Theorem is
used here; see the notes.) Hence, in the original
process we have

2  amC?
R f < * 0
érzlof(wk)_f +7 )

with probability 1. Letting v — oo, we obtain
infr>o f(zr) < f*4+amCEé/2. Q.E.D.



A CONVERGENCE RATE RESULT

e Let ap = o in the randomized method. Then,
for any positive scalar ¢, we have with prob. 1

amC? + ¢
. < fx 0
Ogng(xk)_f + )

Y

where N is a random variable with

m(d(xQ,X*))2

873

E{N} <

where d(xg, X*) is the min distance of x¢ to the
optimal set X*.

e Compare w/ the deterministic method. It is
guaranteed to reach after processing no more than

2

m(d(:z:o,X*))

843

K =
components the level set

{a

flx) < f"+

am?C§ + € }
2



MIT OpenCourseWare
http://ocw.mit.edu

6.253 Convex Analysis and Optimization
Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.



http://ocw.mit.edu
http://ocw.mit.edu/terms



