LECTURE 17

LECTURE OUTLINE

e Subgradient methods

e (alculation of subgradients

e (Convergence
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e Steepest descent at a point requires knowledge

of the entire subdifferential at a point

e Convergence failure of steepest descent

e Subgradient methods abandon the idea of com-

puting the full subdifferential to effect cost func-

tion descent ...

Move instead along the direction of a single

arbitrary subgradient

All figures are courtesy of Athena Scientific, and are used with permission.



SINGLE SUBGRADIENT CALCULATION

e Subgradient calculation for minimax:

f(:l?) = Sup ¢(377 Z)

ze/

where Z C ™ and ¢(-, z) is convex for all z € Z.

e For fixed x € dom(f), assume that z, € Z
attains the supremum above. Then

gz € 0P(x, 2z) = gz € 0f(x)

e Proof: From subgradient inequality, for all y,

fly) = sup oy, z) > ¢y, 22) > ¢(x, 22) + gz (y — @)

= f(x) + 9. (y — x)

e Special case: Dual problem of min e x 4()<0 f():

— _ /
maxq(u) = inf Lz, u) = inf {f(2) +wg(@)}

or min,>o F'(11), where F/(—u) = —q(p).
o Ifx, c argminxgx{f( )+ ' g(x } then

—g(zu) € OF (1)



ALGORITHMS: SUBGRADIENT METHOD

e Problem: Minimize convex function f : " —
R over a closed convex set X.

e [terative descent idea has difficulties in the ab-
sence of differentiability of f.

e Subgradient method:

Trp+1 = Px(zr — argr),

where ¢, is any subgradient of f at xg, ai is a
positive stepsize, and Px(-) is projection on X.
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KEY PROPERTY OF SUBGRADIENT METHOD

e For a small enough stepsize aj, it reduces the
Fuclidean distance to the optimum.
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Tr+1 = Px(xx — argk)

e Proposition: Let {z;} be generated by the
subgradient method. Then, for all y € X and k:

|2k 1 —yll* < llzw—yll* =20 (f (me) = f(y)) +aicll gl
|zer1 —yll < llzx —yll,

for all oy, such that

2(f(x) — f(y)).

0 < ar <
lgx 1%




PROOF

e Proof of nonexpansive property
|Px(z) = Px(y)| < lle —yl,  Va,yeRn

Use the projection theorem to write

(2 — Px(2)) (z — Px(z)) <0, VzeX

from which (Px(y) — Px<$)),(33 — Px(z)) < 0.

Similarly, (Px(z) — Px(y)) (y — Px(y)) < 0.
Adding and using the Schwarz inequality,

|Px )~ Px@)||” < (Px(v) — Px (@) (y — o
< ||Px () = Px(@)]| - lly — =l
Q.E.D.

e Proof of proposition: Since projection is non-
expansive, we obtain for all y € X and k,
|k — ylI2 = || Px (25 — axgr) — 9|

< |zx — argr — y||?

= llzx — ylI? — 20mg;,(zx — y) + |l gx?
<oy — ylI2 = 20 (f(2r) — f(y)) + a2 llgwll?,

where the last inequality follows from the subgra-
dient inequality. Q.E.D.




CONVERGENCE MECHANISM

e Assume constant stepsize: arp = «

o If ||gx|| < ¢ for some constant ¢ and all k,
21— < lae—a*[2—2a(f(ar)—f(@*)) +a2e?
so the distance to the optimum decreases if

2(f(xr) — f(a*))

D<a< 5
C

or equivalently, if x; does not belong to the level
set

o] )< s+ %5}

Level set

{z | f(z) < f* +ac?/2}

Optimal solution set



STEPSIZE RULES

e Constant Stepsize: o = «.
e Diminishing Stepsize: a; — 0, ), ap = o0

¢ Dynamic Stepsize:

flxr) — fx

A —
2
where fi is an estimate of f*:

— If fi = f*, makes progress at every iteration.

If fr < f* it tends to oscillate around the
optimum. If fr > f* it tends towards the

level set {x | f(z) < fr}.

— fr can be adjusted based on the progress of
the method.

e Example of dynamic stepsize rule:

fr = min f(x;) — 0k,

0<j<k

and dy, (the “aspiration level of cost reduction”) is
updated according to

o ooy if f(zrt1) < fr,
k+1 = max{ﬁ5k,5} if f(xga1) > fr,

where § > 0, 8 < 1, and p > 1 are fixed constants.



SAMPLE CONVERGENCE RESULTS

o Let f =infr>o f(zr), and assume that for some
c, we have

¢ >sup{|lgll | g € Of (xr)}
k>0

e Proposition: Assume that oy is fixed at some
positive scalar «. Then:

(a) If f* = —o0, then f = f*.
(b) If f* > —o0, then

e Proposition: If oy satisfies

k— o0

oo
lim ap =0, g Qp = 00,
k=0

then f = f*.
e Similar propositions for dynamic stepsize rules.

e Many variants ...
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