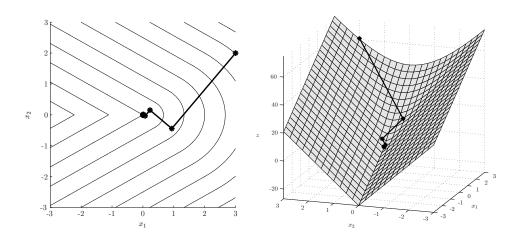
LECTURE 17

LECTURE OUTLINE

- Subgradient methods
- Calculation of subgradients
- Convergence

- Steepest descent at a point requires knowledge of the entire subdifferential at a point
- Convergence failure of steepest descent



- Subgradient methods abandon the idea of computing the full subdifferential to effect cost function descent ...
- Move instead along the direction of a single arbitrary subgradient

All figures are courtesy of Athena Scientific, and are used with permission.

SINGLE SUBGRADIENT CALCULATION

• Subgradient calculation for minimax:

$$f(x) = \sup_{z \in Z} \phi(x, z)$$

where $Z \subset \Re^m$ and $\phi(\cdot, z)$ is convex for all $z \in Z$.

• For fixed $x \in \text{dom}(f)$, assume that $z_x \in Z$ attains the supremum above. Then

$$g_x \in \partial \phi(x, z_x) \qquad \Rightarrow \qquad g_x \in \partial f(x)$$

• **Proof:** From subgradient inequality, for all y,

$$f(y) = \sup_{z \in Z} \phi(y, z) \ge \phi(y, z_x) \ge \phi(x, z_x) + g'_x(y - x)$$
$$= f(x) + g'_x(y - x)$$

• Special case: Dual problem of $\min_{x \in X, g(x) \leq 0} f(x)$:

$$\max_{\mu \ge 0} q(\mu) \equiv \inf_{x \in X} L(x, \mu) = \inf_{x \in X} \left\{ f(x) + \mu' g(x) \right\}$$

or $\min_{\mu>0} F(\mu)$, where $F(-\mu) \equiv -q(\mu)$.

• If $x_{\mu} \in \arg\min_{x \in X} \{f(x) + \mu'g(x)\}$ then

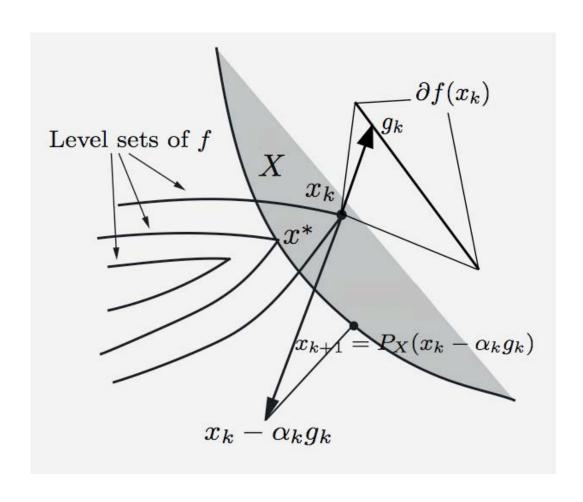
$$-g(x_{\mu}) \in \partial F(\mu)$$

ALGORITHMS: SUBGRADIENT METHOD

- **Problem:** Minimize convex function $f: \mathbb{R}^n \mapsto \mathbb{R}$ over a closed convex set X.
- Iterative descent idea has difficulties in the absence of differentiability of f.
- Subgradient method:

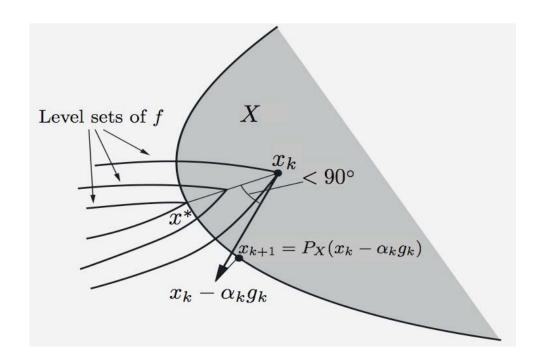
$$x_{k+1} = P_X(x_k - \alpha_k g_k),$$

where g_k is **any** subgradient of f at x_k , α_k is a positive stepsize, and $P_X(\cdot)$ is projection on X.



KEY PROPERTY OF SUBGRADIENT METHOD

• For a small enough stepsize α_k , it reduces the Euclidean distance to the optimum.



• **Proposition:** Let $\{x_k\}$ be generated by the subgradient method. Then, for all $y \in X$ and k:

$$||x_{k+1} - y||^2 \le ||x_k - y||^2 - 2\alpha_k (f(x_k) - f(y)) + \alpha_k^2 ||g_k||^2$$

and if $f(y) < f(x_k)$,

$$||x_{k+1} - y|| < ||x_k - y||,$$

for all α_k such that

$$0 < \alpha_k < \frac{2(f(x_k) - f(y))}{\|g_k\|^2}.$$

PROOF

Proof of nonexpansive property

$$||P_X(x) - P_X(y)|| \le ||x - y||, \quad \forall x, y \in \Re^n.$$

Use the projection theorem to write

$$(z - P_X(x))'(x - P_X(x)) \le 0, \quad \forall z \in X$$

from which $(P_X(y) - P_X(x))'(x - P_X(x)) \leq 0$. Similarly, $(P_X(x) - P_X(y))'(y - P_X(y)) \leq 0$. Adding and using the Schwarz inequality,

$$||P_X(y) - P_X(x)||^2 \le (P_X(y) - P_X(x))'(y - x)$$

$$\le ||P_X(y) - P_X(x)|| \cdot ||y - x||$$

Q.E.D.

• **Proof of proposition:** Since projection is non-expansive, we obtain for all $y \in X$ and k,

$$||x_{k+1} - y||^2 = ||P_X (x_k - \alpha_k g_k) - y||^2$$

$$\leq ||x_k - \alpha_k g_k - y||^2$$

$$= ||x_k - y||^2 - 2\alpha_k g'_k (x_k - y) + \alpha_k^2 ||g_k||^2$$

$$\leq ||x_k - y||^2 - 2\alpha_k (f(x_k) - f(y)) + \alpha_k^2 ||g_k||^2,$$

where the last inequality follows from the subgradient inequality. **Q.E.D.**

CONVERGENCE MECHANISM

- Assume constant stepsize: $\alpha_k \equiv \alpha$
- If $||g_k|| \le c$ for some constant c and all k,

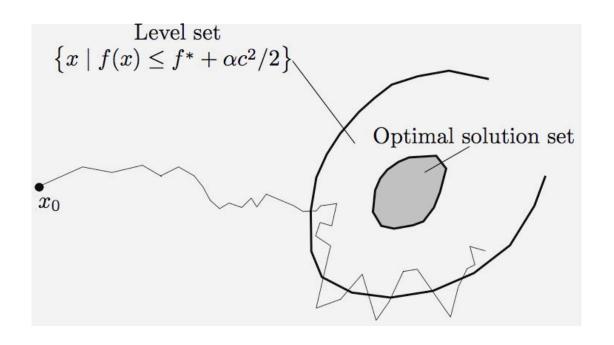
$$||x_{k+1} - x^*||^2 \le ||x_k - x^*||^2 - 2\alpha (f(x_k) - f(x^*)) + \alpha^2 c^2$$

so the distance to the optimum decreases if

$$0 < \alpha < \frac{2(f(x_k) - f(x^*))}{c^2}$$

or equivalently, if x_k does not belong to the level set

$$\left\{ x \mid f(x) < f(x^*) + \frac{\alpha c^2}{2} \right\}$$



STEPSIZE RULES

- Constant Stepsize: $\alpha_k \equiv \alpha$.
- Diminishing Stepsize: $\alpha_k \to 0$, $\sum_k \alpha_k = \infty$
- Dynamic Stepsize:

$$\alpha_k = \frac{f(x_k) - f_k}{c^2}$$

where f_k is an estimate of f^* :

- If $f_k = f^*$, makes progress at every iteration. If $f_k < f^*$ it tends to oscillate around the optimum. If $f_k > f^*$ it tends towards the level set $\{x \mid f(x) \leq f_k\}$.
- f_k can be adjusted based on the progress of the method.
- Example of dynamic stepsize rule:

$$f_k = \min_{0 \le j \le k} f(x_j) - \delta_k,$$

and δ_k (the "aspiration level of cost reduction") is updated according to

$$\delta_{k+1} = \begin{cases} \rho \delta_k & \text{if } f(x_{k+1}) \le f_k, \\ \max\{\beta \delta_k, \delta\} & \text{if } f(x_{k+1}) > f_k, \end{cases}$$

where $\delta > 0$, $\beta < 1$, and $\rho \ge 1$ are fixed constants.

SAMPLE CONVERGENCE RESULTS

• Let $f = \inf_{k \geq 0} f(x_k)$, and assume that for some c, we have

$$c \ge \sup_{k \ge 0} \{ \|g\| \mid g \in \partial f(x_k) \}.$$

- **Proposition:** Assume that α_k is fixed at some positive scalar α . Then:
 - (a) If $f^* = -\infty$, then $f = f^*$.
 - (b) If $f^* > -\infty$, then

$$f \le f^* + \frac{\alpha c^2}{2}.$$

• **Proposition:** If α_k satisfies

$$\lim_{k \to \infty} \alpha_k = 0, \qquad \sum_{k=0}^{\infty} \alpha_k = \infty,$$

then $f = f^*$.

- Similar propositions for dynamic stepsize rules.
- Many variants ...

MIT OpenCourseWare http://ocw.mit.edu

6.253 Convex Analysis and Optimization Spring 2010

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.