
LECTURE 15 

LECTURE OUTLINE 

Problem Structures • 

− Separable problems 
− Integer/discrete problems – Branch-and-bound 

− Large sum problems 
− Problems with many constraints 

•	 Conic Programming 

− Second Order Cone Programming 

− Semidefinite Programming 

All figures are courtesy of Athena Scientific, and are used with permission.



SEPARABLE PROBLEMS 

• Consider the problem 

minimize

m� 

i=1 

fi(xi)


m

where fi : �ni �→ � and gji : �ni �→ � are given 
functions, and Xi are given subsets of �ni . 

• Form the dual problem 

� 

i=1 

s. t.
 gji(xi) ≤ 0, j  = 1, . . . , r, 
 xi ∈ Xi, ∀ i


�


inf fi(xi) + 

xi∈Xi 

�
r

j=1 

µjgji(xi)

�
�
m m

i=1 i=1 

maximize
 qi(µ) ≡


subject to µ ≥ 0 

• Important point: The calculation of the dual 
function has been decomposed into n simpler 
minimizations. Moreover, the calculation of dual 
subgradients is a byproduct of these mini­
mizations (this will be discussed later) 

• Another important point: If Xi is a discrete 
set (e.g., Xi = {0, 1}), the dual optimal value is 
a lower bound to the optimal primal value. It is 
still useful in a branch-and-bound scheme 

�




LARGE SUM PROBLEMS 

Consider cost function of the form • 
m

f(x) =  
� 

fi(x), m is very large, 
i=1 

where fi : �n �→ � are convex. Some examples: 

• Dual cost of a separable problem. 

• Data analysis/machine learning: x is pa­
rameter vector of a model; each fi corresponds to 
error between data and output of the model. 
− Least squares problems (fi quadratic). 
− �1-regularization (least squares plus �1 penalty): 

m n

min 
�

(a�j x− bj )2 + γ 
� 

|xi|
x 

j=1 i=1 

The nondifferentiable penalty tends to set a large 
number of components of x to 0. 

Min of an expected value E
�
F (x, w)

�
, where • 

w is a random variable taking a finite but very 
large number of values wi, i = 1, . . . ,m, with cor­
responding probabilities πi. 

• Stochastic programming: 

min 

� 

F1(x) +  Ew{min F2(x, y, w)
�� 

x y 

• Special methods, called incremental apply. 



PROBLEMS WITH MANY CONSTRAINTS


Problems of the form • 

minimize f(x)

subject to a�j x ≤ bj , j  = 1, . . . , r, 


where r: very large. 

• One possibility is a penalty function approach: 
Replace problem with 

r

min f(x) +  c
� 

P (a�j x− bj ) 
x∈�n 

j=1 

where P ( ) is a scalar penalty function satisfying
·
P (t) = 0  if  t ≤ 0, and P (t) > 0 if  t > 0, and c is a

positive penalty parameter. 

•	 Examples: 
− The quadratic penalty P (t) =  

�
max{0, t}

�2 
. 

− The nondifferentiable penalty P (t) = max{0, t}. 
• Another possibility: Initially discard some of 
the constraints, solve a less constrained problem, 
and later reintroduce constraints that seem to be 
violated at the optimum (outer approximation). 

•	 Also inner approximation of the constraint set. 



CONIC PROBLEMS


• A conic problem is to minimize a convex func­
tion f : �n �→ (−∞, ∞] subject to a cone con­
straint. 

•	 The most useful/popular special cases: 
− Linear-conic programming 

− Second order cone programming 

− Semidefinite programming 

involve minimization of a linear function over the 
intersection of an affine set and a cone. 

• Can be analyzed as a special case of Fenchel 
duality. 

• There are many interesting applications of conic 
problems, including in discrete optimization. 



PROBLEM RANKING IN


INCREASING PRACTICAL DIFFICULTY


•	 Linear and (convex) quadratic programming.

− Favorable special cases.


•	 Second order cone programming. 

•	 Semidefinite programming. 

•	 Convex programming.

− Favorable special cases.

− Geometric programming.

− Quasi-convex programming.


•	 Nonlinear/nonconvex/continuous programming. 
− Favorable special cases. 
− Unconstrained. 
− Constrained. 

•	 Discrete optimization/Integer programming


− Favorable special cases.




CONIC DUALITY


• Consider minimizing f(x) over  x ∈ C, where  f : 
�n �→ (−∞,∞] is a closed proper convex function 
and C is a closed convex cone in �n. 

• We apply Fenchel duality with the definitions


f1(x) =  f(x), f2(x) =  
� 0  if  x ∈ C, 
∞ if x /∈ C. 

The conjugates are 

f1 
�(λ) =  sup  

�
λ�x−f(x)

�
, f2 

�(λ) =  sup λ�x = 
� 

0  if λ ∈ C∗, 

x∈�n 
x∈C 

∞ if λ ∈/ C∗, 

where C∗ = {λ | λ�x ≤ 0, ∀ x ∈ C} is the polar 
cone of C. 

• The dual problem is 

minimize f�(λ) 

subject to C,λ ∈ ˆ

where f� is the conjugate of f and 

Ĉ = {λ | λ�x ≥ 0, ∀ x ∈ C}. 

Ĉ = −C∗ is called the dual cone. 



LINEAR-CONIC PROBLEMS


• Let f be affine, f(x) =  c�x, with dom(f) be­
ing an affine set, dom(f) =  b + S, where S is a 
subspace. 

•	 The primal problem is 

minimize c�x


subject to x − b ∈ S, x ∈ C.


•	 The conjugate is 

f�(λ) =  sup  (λ − c)�x = sup  (λ − c)�(y + b) 
x−b∈S	 y∈S � 

(λ − c)�b if λ − c ∈ S⊥,= ∞ if λ − c /∈ S⊥, 

so the dual problem can be written as 

minimize b�λ 

subject to C.λ − c ∈ S⊥, λ ∈ ˆ

•	 The primal and dual have the same form. 

• If C is closed, the dual of the dual yields the 
primal. 



SPECIAL LINEAR-CONIC FORMS


min c�x	 max b�λ, 
Ax=b, x∈C	

⇐⇒ 
c−A�λ∈Ĉ

min c�x	 max b�λ, 
Ax−b∈C	

⇐⇒ 
A�λ=c,λ ∈Ĉ

n m n mwhere	x ∈ � , λ ∈ � , c ∈ � , b ∈ � , A : m×n.


• For the first relation, let x be such that Ax = b, 
and write the problem on the left as 

minimize c�x 

subject to x − x ∈ N(A), x  ∈ C 

•	 The dual conic problem is 
minimize x�µ 

subject to µ − c ∈ N(A)⊥, µ  ∈ Ĉ. 

• Using N(A)⊥ = Ra(A�), write the constraints 
as c − µ ∈ −Ra(A�) = Ra(A�), µ ∈ Ĉ, or 

c − µ	= A�λ, µ ∈ ˆ for some λ ∈ �m.C,


• Change variables µ = c−A�λ, write the dual as 

minimize x�(c −A�λ)


subject to c −A�λ ∈ Ĉ


discard the constant x�c, use the fact Ax = b, and 
change from min to max. 



SOME EXAMPLES


•	 Nonnegative Orthant: C = {x | x ≥ 0}. 
The Second Order Cone: Let • 

�	 � 
2 2 

� 

C	= (x1, . . . , xn) | xn ≥ x1 + · · · + xn−1 

x3 

x1 

x2 

The Positive Semidefinite Cone: Consider • 
the space of symmetric n× n matrices, viewed as 
the space �n 2 with the inner product 

n n

< X,Y  >= trace(XY ) =  
� � 

xij yij 

i=1 j=1 

Let C be the cone of matrices that are positive 
semidefinite. 

•	 All these are self-dual , i.e.,  C = −C∗ = Ĉ. 



SECOND ORDER CONE PROGRAMMING


• Second order cone programming is the linear-
conic problem 

minimize c�x


subject to Aix − bi ∈ Ci, i  = 1, . . . ,m,


where c, bi are vectors, Ai are matrices, bi is a 
vector in �ni , and 

Ci : the second order cone of �ni 

The cone here is • 

C = C1 × · · ·  ×  Cm 

x3 

x1 

x2 



SECOND ORDER CONE DUALITY 

• Using the generic special duality form 

min	 max 
Ax−b∈C 

c�x ⇐⇒ 
A�λ=c,λ ∈Ĉ

b�λ, 

and self duality of C, the dual problem is 

m

maximize	
� 

b�iλi 

i=1 
m

subject to	
� 

A�λi = c,λ i ∈ Ci, i = 1, . . . ,m, i

i=1


where λ = (λ1, . . . , λm). 

• The duality theory is no more favorable than 
the one for linear-conic problems. 

• There is no duality gap if there exists a feasible 
solution in the interior of the 2nd order cones Ci. 

• Generally, second order cone problems can be 
recognized from the presence of norm or convex 
quadratic functions in the cost or the constraint 
functions. 

• There are many applications. 



EXAMPLE: ROBUST LINEAR PROGRAMMING


minimize c�x


subject to a�j x ≤ bj , ∀ (aj , bj ) ∈ Tj , j  = 1, . . . , r, 


where	c ∈ �n, and Tj is a given subset of �n+1. 

•	 We convert the problem to the equivalent form 

minimize c�x 

subject to gj (x) ≤ 0, j = 1, . . . , r, 


where gj (x) = sup(aj ,bj )∈Tj 
{a�j x− bj }.


• For special choice where Tj is an ellipsoid, 

Tj = 
�
(aj + Pj uj , bj + qj

� uj ) | �uj � ≤ 1
� 

we can express gj (x) ≤ 0 in terms of a SOC: 

gj (x) =  sup  
�
(aj + Pj uj )�x− (bj + qj

� uj )
� 

�uj �≤1 

= sup  (Pj
�x− qj )�uj + a�j x− bj , 

�uj �≤1 

= �Pj
�x− qj �+ a�j x− bj . 

Thus, gj (x) ≤ 0 i  ff  (Pj
�x−qj , bj −a�j x) ∈ Cj , where 

Cj is the SOC. 
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