
LECTURE 14


LECTURE OUTLINE


•	 Min-Max Duality 

Existence of Saddle Points • 

−−−−−−−−−−−−−−−−−−−−−−−−−−−−


Given φ : X × Z �→ �, where  X ⊂ �n, Z ⊂ �m 

consider 
minimize sup φ(x, z)


z∈Z 

subject to x ∈ X 

and 
maximize inf φ(x, z)


x∈X 

subject to z ∈ Z. 

All figures are courtesy of Athena Scientific, and are used with permission.



REVIEW


• Minimax inequality (holds always)


sup inf φ(x, z) ≤ inf sup φ(x, z)

z∈Z x∈X x∈X z∈Z 

Important issue is whether minimax equality holds. 

• Definition: (x∗, z∗) is called a saddle point of 
φ if 

φ(x∗, z) ≤ φ(x∗, z∗) ≤ φ(x, z∗), ∀ x ∈ X, ∀ z ∈ Z 

• Proposition: (x∗, z∗) is a saddle point if and 
only if the minimax equality holds and 

x∗ ∈ arg min sup φ(x, z), z∗ ∈ arg max inf φ(x, z) 
x∈X z∈Z z∈Z x∈X 

• Connection w/ constrained optimization: 
− Strong duality is equivalent to 

inf sup L(x, µ) =  sup  inf L(x, µ) 
x∈X µ≥0 µ≥0 x∈X 

where L is the Lagrangian function. 
− Optimal primal-dual solution pairs (x∗, µ∗) 

are the saddle points of L. 



MC/MC FRAMEWORK FOR MINIMAX


• Use MC/MC with M = epi(p) where  p : �m �→
[−∞, ∞] is the perturbation function 

p(u) =  inf  sup 
�
φ(x, z) − u�z

�
, 

x∈X z∈Z 
u ∈ �m 

• Important fact: p is obtained by partial min. 

• Note that w∗ = p(0) = inf sup φ and φ(·, z): 
convex for all z implies that M is convex. 

• If −φ(x, ·) is closed and convex, the dual func­
tion in MC/MC is 

q(z) =  inf  φ(x, z), q∗ = sup  inf  φ 
x∈X 



MINIMAX THEOREM I 

me that: Assu

(1) X and Z are convex. 

(2) p(0) = infx∈X supz∈Z φ(x, z) < ∞. 

(3) For each z ∈ Z, the function φ( , z) is convex.
·
(4) For each x ∈ X, the function −φ(x, ) :  Z �→
·

� is closed and convex. 

Then, the minimax equality holds if and only if

the function p is lower semicontinuous at u = 0.


Proof: The convexity/concavity assumptions guar­
antee that the minimax equality is equivalent to 
q∗ = w∗ in the min common/max crossing frame­
work. Furthermore, w∗ < ∞ by assumption, and 
the set M [equal to M and epi(p)] is convex. 

By the 1st Min Common/Max Crossing The­
orem, we have w∗ = q∗ iff for every sequence �
(uk, wk)

� 
⊂ M with uk → 0, there holds w∗ ≤

lim infk→∞ wk. This is equivalent to the lower 
semicontinuity assumption on p: 

p(0) ≤ lim inf p(uk), for all {uk} with uk → 0

k→∞




MINIMAX THEOREM II


Assume that: 

(1) X and Z are convex. 

(2) p(0) = infx∈X supz∈Z φ(x, z) > −∞. 

(3) For each z ∈ Z, the function φ( , z) is convex.
·
(4) For each x ∈ X, the function −φ(x, ) :  Z �→
·

� is closed and convex. 

(5) 0 lies in the relative interior of dom(p). 

Then, the minimax equality holds and the supre­
mum in supz∈Z infx∈X φ(x, z) is attained by some 
z ∈ Z. [Also the set of z where the sup is attained 
is compact if 0 is in the interior of dom(p).] 

Proof: Apply the 2nd Min Common/Max Cross­
ing Theorem. 

• Counterexamples of strong duality and exis­
tence of solutions/saddle points can be constructed 
from corresponding constrained min examples. 



EXAMPLE I


• Let X = 
�
(x1, x2) | x ≥ 0

� 
and Z = {z ∈ � |

z ≥ 0}, and let 
φ(x, z) =  e−

√
x1x2 + zx1, 

which satisfy the convexity and closedness assump­
tions. For all z ≥ 0, 

inf 
�
e−
√

x1x2 + zx1
� 

= 0, 
x≥0 

so supz≥0 infx≥0 φ(x, z) = 0. Also, for all x ≥ 0, 

sup 
�
e−
√

x1x2 + zx1
� 

= 

� 
1  if  x1 = 0, 

z≥0 ∞ if x1 > 0, 

so infx≥0 supz≥0 φ(x, z) = 1. 

Here • 

p(u) =  inf  sup 
�
e−
√

x1x2 + z(x1 − u)
� 

x≥0 z≥0 

epi(p) 

u 

p(u) 

1 

0 



EXAMPLE II


•	 Let X = �, Z = {z ∈ � |  z ≥ 0}, and let 

φ(x, z) =  x + zx2, 

which satisfy the convexity and closedness assump­
tions.	 For all z ≥ 0, 

� 
−1/(4z) if  z >  0,inf 

x∈� 
{x + zx2} = −∞ if z = 0, 

so supz≥0 infx∈� φ(x, z) = 0. Also, for all x ∈ �, 

� 
0  if  x = 0, 

z≥0 
{x + zx2sup	 } = ∞ otherwise,


so infx∈� supz≥0 φ(x, z) = 0. However, the sup is 
not attained, i.e., there is no saddle point. 

Here • 

p(u) =  inf  sup − uz}

z≥0

{x + zx2 
x∈� 

= 

� 
−√u if u ≥ 0, 
∞ if u <  0. 



SADDLE POINT ANALYSIS


• The preceding analysis indicates the importance 
of the perturbation function 

p(u) =  inf  F (x, u),

x∈�n 

where 

F (x, u) =  

� 
supz∈Z 

�
φ(x, z) − u�z

� 
if x ∈ X, 

∞ if x /∈ X. 

It suggests a two-step process to establish the min­

imax equality and the existence of a saddle point:


(1)	 Show that p is closed and convex, thereby  
showing that the minimax equality holds by 
using the first minimax theorem. 

(2)	 Verify that the inf of supz∈Z φ(x, z) over 
x ∈ X, and the sup of infx∈X φ(x, z) over 
z ∈ Z are attained, thereby showing that 
the set of saddle points is nonempty. 



SADDLE POINT ANALYSIS (CONTINUED)


• Step (1) requires two types of assumptions: 

(a) Convexity/concavity/semicontinuity conditions 
of Minimax Theorem I (so the MC/MC frame­
work applies). 

(b) Conditions for preservation of closedness by 
the partial minimization in 

p(u) =  inf  F (x, u) 
x∈�n 

e.g., for some u, the nonempty level sets

�
x | F (x, u) ≤ γ

� 

are compact. 

• Step (2) requires that either Weierstrass’ The­
orem can be applied, or else one of the conditions 
for existence of optimal solutions developed so far 
is satisfied. 



CLASSICAL SADDLE POINT THEOREM


• Assume convexity/concavity/semicontinuity of

φ and that X and Z are compact. Then the set

of saddle points is nonempty and compact.


• Proof: F is convex and closed by the convex­

ity/concavity/semicontinuity of φ, so  p is also con­

vex. Using the compactness of Z, F is real-valued

over X × �m, and from the compactness of X,

it follows that p is also real-valued and therefore

continuous. Hence, the minimax equality holds by

the first minimax theorem.


The function supz∈Z φ(x, z) is equal to F (x, 0), 
so it is closed, and the set of its minima over x ∈ X 
is nonempty and compact by Weierstrass’ Theo­
rem. Similarly the set of maxima of the function 
infx∈X φ(x, z) over  z ∈ Z is nonempty and com­
pact. Hence the set of saddle points is nonempty 
and compact. Q.E.D. 



ANOTHER THEOREM


• Use the theory of preservation of closedness 
under partial minimization. 

• Assume convexity/concavity/semicontinuity of 
φ. Consider the functions 

t(x) =  F (x, 0) = 

� 
supz∈Z φ(x, z) if  

if x /
x ∈ X, 

∞ ∈ X, 

and 

r(z) =  
� − infx∈X φ(x, z) if  z ∈ Z, 
∞ if z /∈ Z. 

• If the level sets of t are compact, the minimax 
equality holds, and the min over x of 

sup φ(x, z)

z∈Z 

[which is t(x)] is attained. (Take u = 0  in  the  
partial min theorem to show that p is closed.) 

• If the level sets of t and r are compact, the set 
of saddle points is nonempty and compact. 

• Various extensions: Use conditions for preser­

vation of closedness under partial minimization.




SADDLE POINT THEOREM


Assume the convexity/concavity/semicontinuity con­
ditions, and that any one of the following holds: 

(1)	 X and Z are compact. 

(2)	 Z is compact and there exists a vector z ∈ Z

and a scalar γ such that the level set 

�
x ∈


X | φ(x, z) ≤ γ
� 

is nonempty and compact.


(3)	 X is compact and there exists a vector x ∈ X

and a scalar γ such that the level set 

�
z ∈


Z | φ(x, z) ≥ γ
� 

is nonempty and compact.


(4) There exist vectors x ∈ X and z ∈ Z, and a

scalar γ such that the level sets

�
x ∈ X | φ(x, z) ≤ γ

�
, 

�
z ∈ Z | φ(x, z) ≥ γ

�
, 

are nonempty and compact. 

Then, the minimax equality holds, and the set of 
saddle points of φ is nonempty and compact. 
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