LECTURE 13

LECTURE OUTLINE

Subgradients

Fenchel inequality

Sensitivity in constrained optimization
Subdifferential calculus

Optimality conditions

All figures are courtesy of Athena Scientific, and are used with permission.



SUBGRADIENTS

o Let f: R — (—00,0| be a convex function.
A vector g € R™ is a subgradient of f at a point
r € dom(f) if

f(z) = f(z) + (z—x)'g, vV zedhn

e ¢ is a subgradient if and only if

f(z) —2/g > f(z) —2'g, VzeRr

so g is a subgradient at x if and only if the hyper-
plane in |7+1 that has normal (—g, 1) and passes
through (:z:, f (a:)) supports the epigraph of f.
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e The set of all subgradients at x is the subdiffer-
ential of f at x, denoted Of(x).




EXAMPLES OF SUBDIFFERENTIALS

e Some examples:

f(@) = Il of(@) A
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e If f is differentiable, then 0f(x) = {V f(x)}.
Proof: If g € 9f(x), then

8y

flx4+2) > f(x)+ ¢z, V z € Rn.

Apply this with z = v(V f(z) —g), v € R, and use
1st order Taylor series expansion to obtain

YWVF(z)—gl2 >o(y), VyeR



EXISTENCE OF SUBGRADIENTS

e Note the connection with MC/MC

M =epi(fz),  fu(2) = flz+2) = f(2)

fa(2) *

Translated
Epigraph of f

i

e Let f: R — (—o00,00]| be a proper convex
function. For every z € ri(dom(f)),

of(z) =S+ +G,

where:

— S is the subspace that is parallel to the affine
hull of dom( f)

— (' is a nonempty and compact set.

e Furthermore, df(x) is nonempty and compact
if and only if z is in the interior of dom(f).



EXAMPLE: SUBDIFFERENTIAL OF INDICATOR

e Let C be a convex set, and 0c be its indicator
function.

e For z ¢ C, 06c(x) = O, by convention.
e For x € C, we have g € 0dc(x) i ff
0c(2) 2 0c(x) +9'(2—x), VzeCl,
or equivalently ¢g’(z — x) < 0 for all z € C. Thus
0dc(xz) is the normal cone of C at x, denoted

Ne(x):

Ne(z)={g|g(z—xz) <0,V zeC}.

e Example: For the case of a polyhedral set
P={x|ax<b;,i=1,...,m},

we have

- [{0} if x € int(P),
Np(z) = {Cone<{ai | alz =b;}) if z ¢ int(P).



FENCHEL INEQUALITY

o Let f:R" — (—o00,00] be proper convex and
let f* be its conjugate. Using the definition of
conjugacy, we have Fenchel’s inequality:

'y < f(x) + f*(y), Vxehrr yelhn.

e Conjugate Subgradient Theorem: The fol-
lowing two relations are equivalent for a pair of
vectors (x,y):

(i) z'y = f(z) + f*(y).
(ii) y € Of(x).

If f is closed, (i) and (ii) are equivalent to

(iii) x € Of*(y).
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MINIMA OF CONVEX FUNCTIONS

e Application: Let f be closed proper convex
and let X* be the set of minima of f over R~.
Then:

(a) X*=0f*(0).
(b) X* is nonempty if 0 € ri(dom(f*)).

(c) X* is nonempty and compact if and only if

0 € int(dom(f*)).
Proof: (a) From the subgradient inequality,
r* minimizes f iff0 € df(x*),
and since
0€df(x*) 1 ffz* € 0f*(0),
we have
r* minimizes f iff xz* € 9f*(0),

(b) 8f*(0) is nonempty if 0 € ri(dom(f*)).

(c) 0f*(0) is nonempty and compact if and only
if 0 € int(dom(f*)). Q.E.D.



SENSITIVITY INTERPRETATION

e Consider MC/MC for the case M = epi(p).

e Dual function is

where p* is the conjugate of p.

e Assume p is proper convex and strong duality

holds, so p(0) = w* = ¢* = sup,cgm { —p*(—,u)}.
Let (* be the set of dual optimal solutions,

Q* = {p | p(0) + p*(—p*) = 0}.
From Conjugate Subgradient Theorem, pu* € Q*

if and only if —u* € 9p(0), i.e., Q* = —3p(0).

e If p is convex and differentiable at 0, —Vp(0) is
equal to the unique dual optimal solution p*.

e Constrained optimization example

plu)=  inf  f(z),

re€X, g(z)<lu
If p is convex and differentiable,

dp(0)

= — : =1,...,r



EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION

e Consider the support function ox(y) of a set
X. To calculate dox (y) at some y, we introduce

r(y) =ox(y+y), y € Rn.

e We have dox(y) = 0r(0) = argmingepn 7*(x).
e We have r*(x) = sup,cpn ¥’z —r(y)}, or

r*(z) = sup {y'z —ox(y+y)} = d0(r) — y'z,
yeR”

where ¢ is the indicator function of cl(conv(X)).

e Hence dox(y) = argmingegn 6(z) — y'x, or

Jox(y) =arg  max  y'x

xecl (conv(X))
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EXAMPLE: SUBDIFF. OF POLYHEDRAL FN

o Let
f(x) = max{ajx + b1,...,arx + b, }.
e For a fixed x € R", consider
A, ={jldjz+bj = f(z)}

and the function r(x) = max{a;-a:' je A}
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e It can be seen that df(x) = 0r(0).

e Since r is the support function of the finite set
{a; | 7 € A}, we see that

Of(x) =0r(0) = COHV({CLj | j € Aw})



CHAIN RULE

o Let f:R™ — (—00,00] be convex, and A be a
matrix. Consider F(z) = f(Ax) and assume that
F' is proper. If either f is polyhedral or else the

range of R(A) Nri(dom(f)) # O, we have
OF (z) = A’0f(Ax), Ve R
Proof: Showing 0F (x) D A’0f(Ax) is simple and

does not require the relative interior assumption.
For the reverse inclusion, let d € 0F () so F(z) >
F(x)+(z—x)'d>0or f(Az)—2'd > f(Az) —2'd

for all z, so (Az,x) solves

minimize f(y) — 2’d
subject to y € dom(f), Az=1y.
If R(A)Nri(dom(f)) # O, by strong duality theo-

rem, there is a dual optimal solution A, such that

(Az,z) € arg  min _ {f(y)—2/d+N(Az—y)}

yeR™, zeR"
Since the min over z is unconstrained, we have

d = A'), so Az € argmingepm {f(y) — Ny}, or
fly) > f(Az) + N(y — Az),  VyeRm

Hence A € 0f(Ax), so that d = A’\ € A’0f(Ax).
It follows that OF (x) C A’0f(Ax). In the polyhe-
dral case, dom(f) is polyhedral. Q.E.D.



SUM OF FUNCTIONS

o Let fi : R" — (—o00,00],7=1,...,m, be proper
convex functions, and let

F=fi+ -+ fm.

e Assume that N7, ri(dom(f;)) # @.
e Then

OF (x) =0f1(x) + -+ Ofm(x), V x e Rn.

Proof: We can write F in the form F(z) = f(Ax),
where A is the matrix defined by Ax = (z,...,x),
and f : Rm" — (—o0, 00| is the function

fan,. . som) = fi(@) + -+ fnlzm).

Use the proof of the chain rule.

e Extension: If for some k, the functions f;, i =
1,...,k, are polyhedral, it is sufficient to assume

(ﬂi?“:l dom(fq;)) N (ﬂ;’f;kﬂ ri(dom(fz-))) # 0.



CONSTRAINED OPTIMALITY CONDITION

o Let f:R" — (—o0,00] be proper convex, let X
be a convex subset of i, and assume that one of
the following four conditions holds:

(i) ri(dom(f)) Nri(X) # O.

(ii) f is polyhedral and dom(f) Nri(X) # @.

(iii) X is polyhedral and ri(dom(f)) N X # @.

(iv) f and X are polyhedral, and dom(f) N X # 0.

Then, a vector z* minimizes f over X iff there
exists g € Odf(x*) such that —g belongs to the
normal cone Nx (x*), i.e.,

g (x —x*) >0, VxelX.

Proof: x* minimizes

F(z) = f(z) + 0x (z)

if and only if 0 € OF(x*). Use the formula for
subdifferential of sum. Q.E.D.



ILLUSTRATION OF OPTIMALITY CONDITION

Level Sets of f

Vf(z*)

e In the figure on the left, f is differentiable and
the condition is that

—Vf(l'*) S NC($*>7
which is equivalent to

Vf(x*) (x —ax*) >0, VrelX.

e In the figure on the right, f is nondifferentiable,
and the condition is that

—g € No(x*) for some g € df(x*).
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