
LECTURE 13 

LECTURE OUTLINE 

•	 Subgradients 

•	 Fenchel inequality 

•	 Sensitivity in constrained optimization 

Subdifferential calculus • 

•	 Optimality conditions 

All figures are courtesy of Athena Scientific, and are used with permission. 



SUBGRADIENTS
 

n	 , ∞] be a convex function. • Let f : � �→
n 

(−∞
A vector g ∈ �  is a subgradient of f at a point 
x ∈ dom(f) if  

f(z) ≥ f(x) + (z − x)�g, ∀ z ∈ �n 

•	 g is a subgradient if and only if 

f(z) − z�g ≥ f(x) − x�g, ∀ z ∈ �n 

so g is a subgradient at x if and only if the hyper­
plane in �n+1 that has normal (−g, 1) and passes 
through 

�
x, f(x)

� 
supports the epigraph of f . 

z 

• The set of all subgradients at x is the subdiffer­
ential of f at x, denoted ∂f(x). 



EXAMPLES OF SUBDIFFERENTIALS
 

• Some examples: 

• If f is differentiable, then ∂f(x) =  {∇f(x)}. 
Proof: If g ∈ ∂f(x), then 

f(x + z) ≥ f(x) +  g�z, ∀ z ∈ �n. 

Apply this with z = γ
�
∇f(x)−g

�
, γ ∈ �, and use 

1st order Taylor series expansion to obtain 

γ�∇f(x) − g�2 ≥ o(γ), ∀ γ ∈ � 
  



EXISTENCE OF SUBGRADIENTS 

•	 Note the connection with MC/MC 

M = epi(fx), fx(z) =  f(x + z) − f(x) 

fx(z) 

• Let f : �n �→ (−∞, ∞] be a proper convex 
function. For every x ∈ ri

�
dom(f)), 

∂f(x) =  S⊥ + G, 

where: 
− S is the subspace that is parallel to the affine 

hull of dom(f) 
− G is a nonempty and compact set. 

• Furthermore, ∂f(x) is nonempty and compact 
if and only if x is in the interior of dom(f). 



EXAMPLE: SUBDIFFERENTIAL OF INDICATOR


• Let C be a convex set, and δC be its indicator 
function. 

• For x /∈ C, ∂δC (x) =  Ø, by convention. 

• For x	∈ C, we  have  g ∈ ∂δC (x) i  ff  

δC (z) ≥ δC (x) +  g�(z − x), ∀ z ∈ C, 

or equivalently g�(z − x) ≤ 0 for all z ∈ C. Thus  
∂δC (x) is  the  normal cone of C at x, denoted 
NC (x): 

NC (x) =  
�
g | g�(z − x) ≤ 0, ∀ z ∈ C

�
. 

•	 Example: For the case of a polyhedral set 

P = {x | a�ix ≤ bi, i = 1, . . . ,m}, 

we have 
� 

{0} if x ∈ int(P ),
NP (x) =  cone

�
{ai	 | a�ix = bi}

� 
if x /∈ int(P ). 
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FENCHEL INEQUALITY


• Let f : � � ,∞] be proper convex and
n → (−∞
let f� be its conjugate. Using the definition of 
conjugacy, we have Fenchel’s inequality : 

nx�y ≤ f(x) +  f�(y), ∀ x ∈ �n, y  ∈ � . 

• Conjugate Subgradient Theorem: The fol­
lowing two relations are equivalent for a pair of 
vectors (x, y): 

(i) x�y = f(x) +  f�(y). 

(ii) y ∈ ∂f(x). 

If f is closed, (i) and (ii) are equivalent to 

(iii) x ∈ ∂f�(y). 
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MINIMA OF CONVEX FUNCTIONS
 

 Application: Let f be closed proper convex •
and let X∗ be the set of minima of f over �n. 
Then: 

(a)	 X∗ = ∂f�(0). 

(b)	 X∗ is nonempty if 0 ∈ ri
�
dom(f�)

�
. 

(c)	 X∗ is nonempty and compact if and only if 
0 ∈ int

�
dom(f�)

�
. 

Proof: (a) From the subgradient inequality, 

x∗ minimizes f iff0 ∈ ∂f(x∗), 

and since 

0 ∈ ∂f(x∗) i  ffx∗ ∈ ∂f�(0), 

we have 

x∗ minimizes f iff x∗ ∈ ∂f�(0), 

(b)	∂f�(0) is nonempty if 0 ∈ ri
�
dom(f�)

�
. 

(c) ∂f�(0) is nonempty and compact if and only 
if 0 ∈ int

�
dom(f�)

�
. Q.E.D. 



SENSITIVITY INTERPRETATION
 

	 Consider MC/MC for the case M = epi(p). •
Dual function is • 

q(µ) =  inf  
�
p(u) +  µ�u

� 
= −p�(−µ), 

m u∈� 

where p� is the conjugate of p. 

• Assume p is proper convex and strong duality 
holds, so p(0) = w∗ = q∗ = sup  

� 
− p�(−µ)

�
.µ∈�m 

Let Q∗ be the set of dual optimal solutions, 

Q∗ = 
�
µ∗ | p(0) + p�(−µ∗) = 0

�
. 

From Conjugate Subgradient Theorem, µ∗ ∈ Q∗ 

if and only if −µ∗ ∈ ∂p(0), i.e., Q∗ = −∂p(0). 

• If p is convex and differentiable at 0, −∇p(0) is 
equal to the unique dual optimal solution µ∗. 

•	 Constrained optimization example 

p(u) =  inf  f(x), 
x∈X, g(x)≤u 

If	p is convex and differentiable, 

∂p(0)
µ∗ 

j = − 
∂uj 

, j = 1, . . . , r.  



EXAMPLE: SUBDIFF. OF SUPPORT FUNCTION


•	 Consider the support function σX (y) of a set 
X. To calculate ∂σX (y) at some y, we  introduce  

r(y) =  σX (y + y), y ∈ �n. 

•	 We have ∂σX (y) =  ∂r(0) = arg minx∈�n r�(x). 

•	 We have r�(x) = supy∈�n {y�x − r(y)}, or 

r�(x) =  sup  {y�x − σX (y + y)} = δ(x) − y�x, 
y∈�n 

where δ is the indicator function of cl
�
conv(X)

�
.
 

•	 Hence ∂σX (y) = arg minx∈�n δ(x) − y�x, or 

∂σX (y) = arg max 
x∈cl

�
conv(X)

� y
�x 

∂σX (y1) 



EXAMPLE: SUBDIFF. OF POLYHEDRAL FN
 

Let• 

f(x) = max{a�1x + b1, . . . , a�rx + br}. 

• For a fixed x ∈ �n, consider 

Ax = 
�
j | a�j x + bj = f(x)

�
 

and the function r(x) = max
�
a�j x | j ∈ Ax 

�
.
 

r(x) 

• It can be seen that ∂f(x) =  ∂r(0). 

• Since r is the support function of the finite set 
{aj | j ∈ Ax}, we see that 

∂f(x) =  ∂r(0) = conv
�
{aj | j ∈ Ax}

� 



CHAIN RULE
 

m  ( , ] be convex, and A be a
• Let f : � � −∞ ∞→
matrix. Consider F (x) =  f(Ax) and assume that 
F is proper. If either f is polyhedral or else the 
range of R(A) ∩ ri(dom(f)) = Ø, we  have  � 

n∂F (x) =  A�∂f(Ax), ∀ x ∈ � . 

Proof: Showing ∂F (x) ⊃ A�∂f(Ax) is simple and 
does not require the relative interior assumption. 
For the reverse inclusion, let d ∈ ∂F (x) so  F (z) ≥
F (x)+(z −x)�d ≥ 0 or f(Az) −z�d ≥ f(Ax) −x�d 
for all z, so  (Ax, x) solves 

minimize f(y) − z�d 

subject to y ∈ dom(f), Az = y. 

If R(A) ∩ ri(dom(f)) = Ø, by strong duality theo­�
rem, there is a dual optimal solution λ, such that 

(Ax, x) ∈ arg min 
�
f(y) −z�d + λ�(Az −y)

� 

y∈�m, z∈�n 

Since the min over z is unconstrained, we have 
d = A�λ, so  Ax ∈ arg miny∈�m 

�
f(y) − λ�y

�
, or 

mf(y) ≥ f(Ax) +  λ�(y −Ax), ∀ y ∈ � . 

Hence λ ∈ ∂f(Ax), so that d = A�λ ∈ A�∂f(Ax). 
It follows that ∂F (x) ⊂ A�∂f(Ax). In the polyhe­
dral case, dom(f) is polyhedral. Q.E.D. 



• Let fi : � �

SUM OF FUNCTIONS
 

  n      → (−∞,∞], i = 1, . . . ,m, be proper
convex functions, and let 

F = f1 + + fm.· · ·  

Assume that ∩m ri
�
dom(fi)

� 
= Ø.1=1• � 

Then • 

∂F (x) =  ∂f1(x) +  · · · + ∂fm(x), ∀ x ∈ �n. 

Proof: We can write F in the form F (x) =  f(Ax), 
where A is the matrix defined by Ax = (x, . . . , x), 
and f : �mn �→ (−∞,∞] is the function 

f(x1, . . . , xm) =  f1(x1) +  + fm(xm).· · ·  

Use the proof of the chain rule. 

• Extension: If for some k, the functions fi, i = 
1, . . . , k,  are polyhedral, it is sufficient to assume 

� 
∩k

i=1 dom(fi)
� 
∩ 

� 
∩m ri

�
dom(fi)

�� 
�= Ø.i=k+1 



• Let f : �n �

CONSTRAINED OPTIMALITY CONDITION
 

→ (−∞, ∞] be proper convex, let X 
be a convex subset of �n, and assume that one of 
the following four conditions holds: 

(i) ri
�
dom(f)

� 
∩ ri(X) = Ø.�


(ii) f is polyhedral and dom(f) ∩ ri(X) = Ø. 

(iii) X is polyhedral and ri
�
dom(f)

� 
∩ X 

� 
=� Ø.
 

(iv) f and X are polyhedral, and dom(f) ∩ X =� Ø. 

Then, a vector x∗ minimizes f over X iff there 
exists g ∈ ∂f(x∗) such that −g belongs to the 
normal cone NX (x∗), i.e., 

g�(x − x∗) ≥ 0, ∀ x ∈ X. 

Proof: x∗ minimizes 

F (x) =  f(x) +  δX (x) 

if and only if 0 ∈ ∂F (x∗). Use the formula for 
subdifferential of sum. Q.E.D. 



ILLUSTRATION OF OPTIMALITY CONDITION
 

Level Sets of f 

∇f(x∗) 

x∗ 
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NC (x∗) 
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• In the figure on the left, f is differentiable and 
the condition is that 

−∇f(x∗) ∈ NC (x∗), 

which is equivalent to 

∇f(x∗)�(x − x∗) ≥ 0, ∀ x ∈ X. 

• In the figure on the right, f is nondifferentiable, 
and the condition is that 

−g ∈ NC (x∗) for some g ∈ ∂f(x∗). 
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