LECTURE 11
LECTURE OUTLINE

e Min Common/Max Crossing Th. III
e Nonlinear Farkas Lemma/Linear Constraints
e Linear Programming Duality

e Convex Programming Duality

Reading: Sections 4.5, 5.1-5.3

Recall the MC/MC Theorem II: If —co < w*
and

0 € D = {u | there exists w € R with (u,w) € M}

then ¢* = w* and there exists u such that q(u) =
qr.

All figures are courtesy of Athena Scientific, and are used with permission.



MC/MC TH. III - POLYHEDRAL

e Consider the MC/MC problems, and assume
that —oo < w* and:

(1) M is a “horizontal translation” of M by —P,

M =M — {(u,0) | u € P},

where P: polyhedral and M: convex.
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=Y
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(2) We have ri(D) N P # @, where

~

D = {u | there exists w € R with (u,w) € M}

Then ¢* = w*, there is a max crossing solution,
and all max crossing solutions p satisfy p'd < 0

for all d € Rp.

e Comparison with Th. II: Since D = D — P,
the condition 0 € ri(D) of Theorem II is

~

ri(D) Nri(P) # O



PROOF OF MC/MC TH. III

e Consider the disjoint convex sets C1 = {(u,v) |
v > w for some (u,w) € M} and Co = {(u,w*) |
u € P} [u € P and (u,w) e M with w* > w
contradicts the definition of w*|

vk

e Since (> is polyhedral, there exists a separat-
ing hyperplane not containing C1, i.e., a (u,3) #
(0,0) such that

Bw*+p'z< pv+ 'z, V(r,v)elCy, VzePrP

inf {fv+pz} < sup {Bv+pz}
(z,v)€C (x,v)eCH
Since (0, 1) is a direction of recession of C'1, we see
that 8 > 0. Because of the relative interior point
assumption, 5 # 0, so we may assume that 5 = 1.



PROOF (CONTINUED)

e Hence,

w* 4+ p'z < inf {v+ p'ul, VzeP,
(u,v)eCy

so that

w* < inf v+ u(u—z
o (u,v)EC’l,ZEP{ H ( )}

= inf  A{v+pu}
(u,v)eM—P

= inf {v+ p'u}
(u,v)EM

= q(p)

Using ¢* < w* (weak duality), we have q(u) =

Prootf that all max crossing solutions p sat-
isfy p'd < 0 for all d € Rp: follows from

— inf /(u —
q() (u,v)égl,zep{v+u(u 2)}

so that q(u) = —o0 if /'d > 0. Q.E.D.

e Geometrical intuition: every (0, —d) with d €
Rp, is direction of recession of M.



MC/MC TH. III - A SPECIAL CASE

e Consider the MC/MC framework, and assume:

(1) For a convex function f : ™ — (—o0, 0],
an r X m matrix A, and a vector b € R":

M = {(u, w) | for some (x,w) € epi(f), Az —b < u}
so M = M + Positive Orthant, where

M = {(A:U—b,w) | (z,w) € epi(f)}

o) e o T
il
epi(f) ~ Sl
M = epi(p)
* w*
(z ,w’S/E (z,w) (Az — b,w) Al
— = N\ —
<« |0 x 0 U 0 U
Az < b

(2) There is an x € ri(dom(f)) s. t. Az —b < 0.
Then ¢* = w* and thereis a p > 0 with q(u) = g¢*.

o Also M = M =~ epi(p), where p(u) = inf 45 _p<y f(2).
e We have w* = p(0) = inf 4x_p<0 f(2).



NONL. FARKAS’ L. - POLYHEDRAL ASSUM.

o Let X C R" be convex, and f: X — R and g; :
Rr— R, j=1,...,7, be linear so g(x) = Az — b
for some A and b. Assume that

f(x) >0, VoeX with Ax —b<0
Let
Q*={u|p=>0, fx)+p(Az—b) > 0,Vz € X},

Assume that there exists a vector T € ri(X) such
that Az — b < 0. Then @* is nonempty.

Proof: As before, apply special case of MC/MC
Th. III of preceding slide, using the fact w* > 0,
implied by the assumption.

)

M = {(u,w) | Az — b < u, for some (z,w) € epi(f)}
" ——




(LINEAR) FARKAS’ LEMMA

e Let A be an m x n matrix and ¢ € ™. The
system Ay = ¢, y > 0 has a solution if and only if

Alz <0 — cz < 0. (*)

e Alternative/Equivalent Statement: If P =

cone{ai,...,an}, whereas,...,ay are the columns
of A, then P = (P*)* (Polar Cone Theorem).

Proof: If y € R" is such that Ay = ¢, y > 0, then
y'A'x = x for all x € R™, which implies Eq. (*).

Conversely, apply the Nonlinear Farkas’ Lemma
with f(x) = —cz, g(z) = A’z, and X = Rm.
Condition (*) implies the existence of 1 > 0 such
that

—clx+ pWAx >0, Ve Rm,
or equivalently
(Ap —c)z >0, VreRm,

or Au = c.



LINEAR PROGRAMMING DUALITY

e (Consider the linear program

minimize c'x

subject to a’x >b;, j=1,...,r

where c € ", a; € **, and b; e R, 5 =1,...,7.

e The dual problem is

maximize b u

subject to Zaj,uj =c, u=>0.
j=1

e Linear Programming Duality Theorem:
(a) If either f* or ¢* is finite, then f* = ¢* and

both the primal and the dual problem have
optimal solutions.

(b) If f* = —o0, then ¢* = —o0.

(¢) If ¢* = 0o, then f* = oc.
Proof: (b) and (c) follow from weak duality. For
part (a): If f* is finite, there is a primal optimal
solution x*, by existence of solutions of quadratic

programs. Use Farkas’ Lemma to construct a dual
feasible p* such that ¢/x* = b’u* (next slide).



PROOF OF LP DUALITY (CONTINUED)

x*

ai a2

¢ = pia1 + paa2
Feasible Set

Cone D (translated to z*)

e Let x* be a primal optimal solution, and let
J={j|ax* =b;}. Then, ¢y > 0 for all y in the
cone of “feasible directions”

D={ylajy>0,VjeJ}

By Farkas’ Lemma, for some scalars pi > 0, ccan
be expressed as

c=) waj, pp20,Vjed, pr=0Yj¢J.

j=1
Taking inner product with z*, we obtain c/'x* =
b’ w*, which in view of ¢g* < f*, shows that ¢* = f*
and that p* is optimal.



LINEAR PROGRAMMING OPT. CONDITIONS

A pair of vectors (z*, u*) form a primal and dual
optimal solution pair if and only if x* is primal-
feasible, pu* is dual-feasible, and

i (b —alx*) =0, Vi=1,...,r. (%)

Proof: If x* is primal-feasible and p* is dual-
tfeasible, then

/

byt =D biy + | e= 3 agu | o
=1 =1 ()

= cx* + Z,u;f(bj — alz*)
j=1

So if Eq. (*) holds, we have b/ u* = ¢’x*, and weak
duality implies that x* is primal optimal and p*
is dual optimal.

Conversely, if (x*, u*) form a primal and dual
optimal solution pair, then x* is primal-feasible,
1* is dual-feasible, and by the duality theorem, we
have bu* = c’z*. From Eq. (**), we obtain Eq.

(%)-



CONVEX PROGRAMMING

Consider the problem

minimize f(x)

subject to z € X, gij(z) <0, j=1,...,n,
where X C R” is convex, and f : X — R and
gj + X — Jt are convex. Assume f*: finite.

e Consider the Lagrangian function

L(z,p) = f(z) + p'g(z),
the dual function

o(1) = {infxex L(z,pu) if p> Q,
—00 otherwise

and the dual problem of maximizing inf,cx L(x, i)
over u > 0.

e Recall this is the max crossing problem in the
MC/MC framework where M = epi(p) with

— inf
p(u) e Suf(f):')



STRONG DUALITY THEOREM

e Assume that f* is finite, and that one of the
following two conditions holds:

(1) There exists z € X such that g(x) < 0.

(2) The functions g;, j = 1,...,r, are affine, and
there exists x € ri(X) such that g(z) < 0.

Then ¢* = f* and the set of optimal solutions of
the dual problem is nonempty. Under condition
(1) this set is also compact.

e Replace f(x) by f(x)— f* so that f(x)—f* >0
for all x € X w/ g(x) < 0. Apply Nonlinear
Farkas’ Lemma. Then, there exist ,u;'f > 0, s.t.

fr< f@)+ ) pigi(z), VzeX
j=1
e [t follows that

< inf {f@)tpgl@)} < inf fla) = f*

reX - zeX,g(x)<0

Thus equality holds throughout, and we have

( )

f*=inf S flx)+ > pigi(z) p = q(p*)
j=1 ,

reX

\



QUADRATIC PROGRAMMING DUALITY

e (Consider the quadratic program
minimize lz'Qx 4+ cz

subject to Ax <b,

where () is positive definite.

e If f* is finite, then f* = ¢* and there exist
both primal and dual optimal solutions, since the
constraints are linear.

e (alculation of dual function:

q(p) = inf {32'Qr +c'z + p'(Az —b)}

The infimum is attained for x = —Q~1(c + A’p),
and, after substitution and calculation,

g(p) = =W AQ T A p— W (b+AQ 1) — 1dQ e

e The dual problem, after a sign change, is
minimize lu'Pu+1'p
subject to u > 0,

where P = AQ—1A’ and t = b+ AQ1lc.
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