
LECTURE 10

LECTURE OUTLINE

• Min Common / Max Crossing duality theorems

• Strong duality conditions

• Existence of dual optimal solutions

• Nonlinear Farkas’ lemma

Reading: Sections 4.3, 4.4, 5.1
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All figures are courtesy of Athena Scientific, and are used with permission. 
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DUALITY THEOREMS


me that w∗ < ∞ and that the set
• Assu

M = (u, w) | there exists w with w ≤ w and (u, w) ∈ M 

is convex. 

• Min Common/Max Crossing Theorem I:

∗ ∗We have q = w if and only if for every sequence


(uk, wk) ⊂ M with uk → 0, there holds 

∗ w ≤ lim inf wk. 
k→∞ 

w ∗ 

u 

w 

0u 

w 

M 

M 

0 

(uk, wk) 
(uk+1, wk+1)w ∗ = q ∗ 

� 
(uk, wk) 

� ⊂ M, uk → 0, w  ∗ ≤ lim inf 
k→∞ 

wk 

q ∗ 

� 
(uk, wk) 

� ⊂ M, uk → 0, w  ∗ > lim inf 
k→∞ 

wk 

• Corollary: If M = epi(p) where p is closed

∗proper convex and p(0) < ∞, then q = w ∗.) 
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DUALITY THEOREMS (CONTINUED)


• Min Common/Max Crossing Theorem II: 
Assume in addition that −∞ < w∗ and that 

 
D = 

�
u  there exists w  with (u, w)  M 
| ∈ � ∈ }

contains the origin in its relative interior. Then 
q ∗ = w ∗ and there exists μ such that q(μ) =  q ∗ . 

D 

u 

w 

M 

M 

0 

w ∗ = q ∗ 

D 

w ∗ 

u 

w 

0 

q ∗ 

(μ, 1) 

• Furthermore, the set {μ | q(μ) =  q ∗} is nonempty 
and compact if and only if D contains the origin 
in its interior. 

• Min Common/Max Crossing Theorem

III: Involves polyhedral assumptions, and will be 
developed later. 
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PROOF OF THEOREM I 

  
me that q ∗ = w ∗ . Let 

�
(uk, wk)

�
 ⊂ M be 

at uk → 0. Then, 

   n

• Assu
such th

q(μ) = inf {w+μ′u} ≤ wk+μ′uk, ∀ k, ∀ μ ∈ �
(u,w)∈M

Taking the limit as k → ∞, we obtain q(μ) ≤ 
nlim infk→∞ wk, for all μ ∈ � , implying that 

∗ ∗ w = q = sup  q(μ) ≤ lim inf wk 
μ∈�n k→∞ 

Conversely, assume that for every sequence 
∗(uk, wk) ⊂ M with uk → 0, there holds w ≤ 

∗lim infk→∞ wk. If w ∗ = −∞, then q = −∞, by  
∗weak duality, so assume that −∞ < w . Steps: 

• Step 1: (0, w  ∗ − ε) ∈/ cl(M) for any ε > 0. 

w 

w ∗ 

w ∗ − ε 
lim inf wk 
k→∞ 

0 u 

M 

(uk+1, wk+1) 

(uk, wk) 
(uk+1, wk+1) 
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PROOF OF THEOREM I (CONTINUED)


• Step 2: M does not contain any vertical lines. 
If this were not so, (0,−1) would be a direction 
of recession of cl(M). Because (0, w  ∗) ∈ cl(M), 
the entire halfline (0, w  ∗ − ε) | ε ≥ 0 belongs to 
cl(M), contradicting Step 1. 

• Step 3: For any ε > 0, since (0, w  ∗−ε) ∈/ cl(M), 
there exists a nonvertical hyperplane strictly sepa­
rating (0, w  ∗ − ε) and M . This hyperplane crosses 
the (n + 1)st axis at a vector (0, ξ) with w ∗ − ε ≤ 

∗ ∗ ∗ξ ≤ w ∗, so  w − ε ≤ q ≤ w . Since ε can be 
∗ ∗arbitrarily small, it follows that q = w . 

w 

(0, w  ∗) 

q(μ) 

(0, ξ) 
(0, w  ∗ − ε) 

0 

M 

(μ, 1) 

M 

u 
Strictly Separating 
Hyperplane 



PROOF OF THEOREM II
 


ote that (0, w∗) is not a relative interior point • N
of M . Therefore, by the Proper Separation The­
orem, there is a hyperplane that passes through 
(0, w∗), contains M in one of its closed halfspaces, 
but does not fully contain M , i.e., for some (µ,β ) =�
(0, 0) 

βw∗ ≤ µ�u + βw, ∀ (u, w) ∈ M, 

βw∗ < sup {µ�u + βw}
(u,w)∈M 

Will show that the hyperplane is nonvertical. 

• Since for any (u, w) ∈ M , the  set  M contains the 
halfline 

�
(u, w) | w ≤ w

�
, it follows that β ≥ 0. If 

β = 0, then 0 ≤ µ�u for all u ∈ D. Since 0 ∈ ri(D) 
by assumption, we must have µ�u = 0 for all u ∈ D 
a contradiction. Therefore, β > 0, and we can 
assume that β = 1. It follows that 

w∗ ≤ 
(u,w 

inf 
)∈M

{µ�u + w} = q(µ) ≤ q∗ 

Since the inequality q∗ ≤ w∗ holds always, we 
must have q(µ) =  q∗ = w∗. 
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NONLINEAR FARKAS’ LEMMA


 Let X ⊂ �n, f : X → �, and gj : X → �,• � �
j = 1, . . . , r, be convex. Assume that 

f(x) ≥ 0, ∀ x ∈ X with g(x) ≤ 0 

Let 

∗Q = μ | μ ≥ 0, f(x) +  μ′g(x) ≥ 0, ∀ x ∈ X . 

∗Then Q is nonempty and compact if and only if 
there exists a vector x ∈ X such that gj (x) < 0 
for all j = 1, . . . , r.  

0} 
(μ, 1) 

(b) 

0} 

(c) 

0} 
(μ, 1) 

(a) 

� 
(g(x), f(x)) | x ∈ X 

� � 
(g(x), f(x)) | x ∈ X 

� � 
(g(x), f(x)) | x ∈ X 

� 

� 
g(x), f(x) 

� 

• The lemma asserts the existence of a nonverti­
cal hyperplane in �r+1, with normal (μ, 1), that 
passes through the origin and contains the set 

g(x), f(x) | x ∈ X


in its positive halfspace.
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PROOF OF NONLINEAR FARKAS’ LEMMA


• Apply MC/MC to 

M = (u, w) | there is x ∈ X s. t. g(x) ≤ u, f(x) ≤ w


(μ, 1) 

0 u 

w 

(0, w  ∗) 

D 

such that g(x) ≤ u, f(x) ≤ w 
� 

� 
(g(x), f(x)) | x ∈ X 

� 

h th t ( ) ≤ 
M = 

� 
(u, w) | there exists x ∈ X 

� 
g(x), f(x) 

� 

• M is equal to M and is formed as the union of

positive orthants translated to points g(x), f(x) , 
x ∈ X. 

• The convexity of X, f , and gj implies convexity 
of M . 

• MC/MC Theorem II applies: we have 

D = u | there exists w ∈ � with (u,w) ∈ M


and 0 ∈ int(D), because (g(x), f(x) ∈ M .
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