LECTURE 9

LECTURE OUTLINE

e Min common/max crossing duality

e Weak duality

e Special Cases

e (Constrained optimization and minimax

e Strong duality

Reading: Sections 4.1,4.2, 3.4

All figures are courtesy of Athena Scientific, and are used with permission.



EXTENDING DUALITY CONCEPTS

e From dual descriptions of sets

e

A union of points An intersection of halfspaces

e To dual descriptions of functions (applying
set duality to epigraphs)

A (—y,1)

e We now go to dual descriptions of problems,
by applying conjugacy constructions to a simple
generic geometric optimization problem



MIN COMMON / MAX CROSSING PROBLEMS

e We introduce a pair of fundamental problems:
e Let M be a nonempty subset of R7+1

(a) Min Common Point Problem: Consider all
vectors that are common to M and the (n +
1)st axis. Find one whose (n + 1)st compo-
nent 1s minimum.

(b) Max Crossing Point Problem: Consider non-
vertical hyperplanes that contain M in their
“upper” closed halfspace. Find one whose
crossing point of the (n + 1)st axis is maxi-

maurnl.
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MATHEMATICAL FORMULATIONS

e Optimal value of the min common prob-
lem:

w* = inf w
(0,w)eM

N\ Dual function value = inf {w+ pu
\ ual function value q(u) (u,-w)eM{ + wu}

Hyperplane H,, ¢ = {(u, w) | w+ pu = 5}

>

o] .

e Math formulation of the max crossing
problem: Focus on hyperplanes with normals
(4, 1) whose crossing point £ satisfies

£ <w+ pu, V (u,w) e M

Max crossing problem is to maximize & subject to
5 < inf(uaw)EM{w T M/u}a JURS §R’n7 or

maximize q(u) 2 inf {w+ pu}
(w,w)eM

subject to u € Rn.



GENERIC PROPERTIES - WEAK DUALITY

e Min common problem

inf w
(0,w)eM

e Max crossing problem

maximize q(p) = inf {w 4+ p'u}
(w,w)eM

subject to u € Rn.

\C"Dual function value () =  inf {w+ pwu}
(u,w)eM

B

o > P

e Note that g is concave and upper-semicontinuous
(inf of linear functions).

¢ Weak Duality: For all 4 € R»

— inf {w+pu}< inf w=uw*
00 = o o rwul < It =

so maximizing over u € R, we obtain ¢* < w*.

e We say that strong duality holds if ¢g* = w*.



CONNECTION TO CONJUGACY

e An important special case:

M = epi(p)

where p : R — [—00,00]. Then w* = p(0), and

— inf wtp'ut = inf w+p'ut,
) (u,w)Eepi(p){ puy {(u,w)lp(U)Sw}{ g
and finally

o) = inf {p(u) + pu)
uceRk™

(p,1) P(u) A




GENERAL OPTIMIZATION DUALITY

e Consider minimizing a function f : £" — [—00, o0].
o Let F': Rt — |—00, 00] be a function with

f(x) = F(x,0), Vxe R
e C(Consider the perturbation function

— inf F
p(u) = inf F(z,u)

and the MC/MC framework with M = epi(p)

e The min common value w* is
i = inf F = inf
we=p(0) = inf F(z,0)= inf f(
e 'The dual function is
= inf w)+p'uy = inf F(x,u)+u'u
o) = inf {pu)tpry = inf (P

so q(pu) = —F*(0, —p), where F'* is the conjugate
of F', viewed as a function of (z,u)

e Since
*— sSu = — inf F*O,— — — inf F*Oy )
T = 3@(1(#) Jnf (0, —n) Jnf (0, p)
we have

T R (2,0) = e (0, 1) = ¢



CONSTRAINED OPTIMIZATION

e Minimize f : " — R over the set
C={zeX|g(x)<0},
where X C ®» and ¢ : k" — R".
e Introduce a “perturbed constraint set”
Cy={zecX|gx)<u}, u € R,

and the function

F(x,u) = {f(x) it x € Cly,

o0 otherwise,

which satisfies F'(z,0) = f(x) for all x € C.

e Consider perturbation function

— inf F inf
p(u) = inf F(z,u)= e S1/"(56)7

and the MC/MC framework with M = epi(p).



CONSTR. OPT. - PRIMAL AND DUAL FNS

e Perturbation function (or primal function)

— inf F inf
p(u) = inf F(z,u)= e Suf(ﬂff),
p(u) |
M epi(p

/

w* = p(0) “Q
o

e Introduce L(x,u) = f(x)+ p/g(x). Then

(9(z), f(z)) | z € X}

q(p) = inf {p(u)+ p'u}
ueR”

— inf {f(x) 4 ,Lblu}

ueR”, z€X, g(z)<u

_ {infwex L(x, ) if p >0,
— 00 otherwise.



LINEAR PROGRAMMING DUALITY

e (Consider the linear program

minimize c'x

subject to a’x >b;, j=1,...,r

where c € R, a; € **, and b; e R, 5 =1,...,7.
e For 11 > 0, the dual function has the form

— inf L
q(u) = inf Lz, p)

\

(

— 1 : . !

= inf < c’x—l—zl,uj(bj az) 3
\ J=

/

— { b/:u if Z;:l ajpty = C,

—o0 otherwise

e Thus the dual problem is

maximize b’

.
subject to Zaj,uj =c, u=>0.
j=1



MINIMAX PROBLEMS

Given ¢ : X X Z — R, where X C R, Z C ®™

consider
minimize sup ¢(z, 2)
A=V

subject to x € X

or
maximize inf ¢(x, z)
reX

subject to z € Z.

e Some important contexts:
— Constrained optimization duality theory

— Zero sum game theory

e We always have

sup inf o¢(x,z) < inf sup o(x, z
ez xTeEX ¢( ) x€X ez ( )

e Key question: When does equality hold?



CONSTRAINED OPTIMIZATION DUALITY

e For the problem

minimize f(x)
subject to x € X, g(x) <0

introduce the Lagrangian function
Lz, p) = f(z) + p'g()

e Primal problem (equivalent to the original)

( f(z) if g(z) <0,

min sup L(x, i) = <
rzeX ©>0 ( 'u)

00 otherwise,

e Dual problem

inf L
prilies SR

e Key duality question: Is it true that

0
inf sup L(z, n) = w* ¢g* =sup inf L(x,
nf, sup (z, ) _ @7 =sup inf) (, )



ZERO SUM GAMES

e Two players: 1st chooses i € {1,...,n}, 2nd
chooses j € {1,...,m}.

e If 7 and j are selected, the 1st player gives a;;
to the 2nd.

e Mixed strategies are allowed: The two players
select probability distributions

r=(T1,...,%Tn), z2=(21,-..,2m)

over their possible choices.

e Probability of (i,7) is xiz;, so the expected
amount to be paid by the 1st player

v/ Az = E Qi TiZj
@]

where A is the n X m matrix with elements a;;.

e Fach player optimizes his choice against the

worst possible selection by the other player. So
— 1st player minimizes max, x’/ Az

— 2nd player maximizes min, 2’ Az



SADDLE POINTS

Definition: (z*,2*) is called a saddle point of ¢
if
d(x*, z) < p(x*, 2*) < d(x,2%), Vee X, Vzes

Proposition: (x*, z*) is a saddle point if and only
if the minimax equality holds and

x™ € arg min sup ¢(z,2), z* € argmax inf ¢(x,z) (*)
re€X ez z€Z z€X

Proof: If (z*,2*) is a saddle point, then

inf sup ¢(z,2) < sup p(z*, 2) = p(a*, 2")

reX ez zeZ
= inf ¢(z,2z") < sup inf ¢(x, 2)

By the minimax inequality, the above holds as an
equality throughout, so the minimax equality and
Eq. (*) hold.

Conversely, if Eq. (*) holds, then

sup inf ¢(z,z) = inf d(z,z") < B(a", ")
zezx€eX zeX

< sup ¢(z”,2) = inf sup ¢(z, 2)
z€ 4 xeX ez

Using the minimax equ., (x*, z*) is a saddle point.



MINIMAX MC/MC FRAMEWORK

e Introduce perturbation function p : R™ —
[—O0,00]

p(u) = inf sup{¢(:v, z) — u’z}, u € Rm

e Apply the MC/MC framework with M = epi(p)

e Introduce élf, the concave closure of f

e We have

sup ¢(z,z) = sup (cld)(z, ),
z€Z zeR™

SO

w* = p(0) = inf sup (cl¢)(z, 2).
TEX eRpm

e The dual function can be shown to be

q(n) = inf (c1§)(z,p), ¥ p€Rm

so if ¢(x, ) is concave and closed,

w* = inf sup o(zx, 2), q* = sup inf ¢(x,z
TEX epm (& 2) ceRm TEX (&:2)



PROOF OF FORM OF DUAL FUNCTION
e Write p(u) = inf__ ps(u), where

pe(u) = Sup{qb(a:, z) — u’z}, x e X,
zZE€L

and note that

nf {pa(u)+u'pf = - sup {v (=) —pz(u) } = —p3(—p)

Except for a sign change, ps is the conjugate of
(—¢)(x, ) |assuming (—cl ¢)(z,-) is proper], so

pi(—p) = —(cl@)(z, ).
Hence, for all u € R,

() = inf 1p(u) +u'p}

inf inf {ps(u) + w'p}
ueR™ xeX

inf inf {ps(u)+wp}
reX ueR™

inf { —pi(—p)}

reX

— inf (A1¢)(z, 1)
reX
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