LECTURE 4

LECTURE OUTLINE

Algebra of relative interiors and closures
Continuity of convex functions
Closures of functions

Recession cones and lineality space

All figures are courtesy of Athena Scientific, and are used with permission.



CALCULUS OF REL. INTERIORS: SUMMARY

e The ri(C') and cl(C) of a convex set C' “differ
very little.”

— Any set “between” ri(C') and cl(C) has the
same relative interior and closure.

— The relative interior of a convex set is equal
to the relative interior of its closure.

— The closure of the relative interior of a con-
vex set is equal to its closure.

e Relative interior and closure commute with
Cartesian product and inverse image under a lin-
ear transformation.

e Relative interior commutes with image under a
linear transformation and vector sum, but closure
does not.

e Neither relative interior nor closure commute
with set intersection.



CLOSURE VS RELATIVE INTERIOR

e Proposition:
(a) We have cl(C) = cl(ri(C)) and ri(C') = ri(cl(C)).

(b) Let C be another nonempty convex set. Then
the following three conditions are equivalent:

(i) C and C have the same rel. interior.
(i) C and C have the same closure.
(iii) ri(C') C C' C cl(C).

Proof: (a) Since ri(C') C C, we have cl(ri(C))) C
cl(C'). Conversely, let z € cl(C). Let x € ri(C).
By the Line Segment Principle, we have

ar + (1 — a)x € ri(C), vV a e (0,1].

Thus, x is the limit of a sequence that lies in ri(C'),

so z € cl(ri(C)).

XI

The proof of ri(C) = ri(cl(C)) is similar.



LINEAR TRANSFORMATIONS

e Let C' be a nonempty convex subset of " and
let A be an m X n matrix.

(a) We have A -ri(C) =ri(A- C).

(b) We have A -cl(C) C cl(A-C). Furthermore,
if C'is bounded, then A - cl(C) = cl(A - C).

Proof: (a) Intuition: Spheres within C' are mapped
onto spheres within A - C' (relative to the affine
hull).

(b) We have A-cl(C') C cl(A-C), since if a sequence
{zr} C C converges to some x € cl(C) then the
sequence { Azxy }, which belongs to A-C, converges
to Az, implying that Az € cl(A - C).

To show the converse, assuming that C' is
bounded, choose any z € cl(A - C). Then, there
exists {xy} C C such that Az — z. Since C is
bounded, {zy} has a subsequence that converges

to some = € cl(C'), and we must have Ax = z. It
follows that z € A - cl(C). Q.E.D.

Note that in general, we may have

A-int(C) # int(A - O), A-cl(C) #cl(A-C)



INTERSECTIONS AND VECTOR SUMS

e Let (1 and (> be nonempty convex sets.

(a) We have
ri(C1 + Cz) = ri(Ch) + 1i(C2),

CI(C1) —+ CI(CQ) C Cl(Cl —+ 02)
If one of C'7 and (5 is bounded, then

Cl(Ol) —+ CI(CQ) = Cl(Cl -+ CQ)

(b) If ri(C1) Nri(C2) # O, then
I‘i(Cl M CQ) — ri(C1) M ri(CQ),

Cl(Cl M 02) — Cl(Cl) M Cl(CQ)

Proof of (a): Ci + (5 is the result of the linear
transformation (x1,x2) — x1 + x2.

e Counterexample for (b):

Cr ={x |z <0}, Cy={x |z >0}



CARTESIAN PRODUCT - GENERALIZATION

e Let C be convex set in fntm, For x € k", let

Ce =1y | (z,y) € C},

and let
D ={x | Cy # 0}.

Then

ri(C) = {(z,y) | z € 1i(D), y € ri(Cy) }.

Proof: Since D is projection of C' on z-axis,
ri(D) = {x | there exists y € R™ with (z,y) € ri(C) },
so that

ri(C) = Uzeri(D) (M“” i ri(C)),

where M, = {(x,y) |y € ?Rm}. For every x €
ri(D), we have

M, Nri(C) =1i(M, N C) = {(z,y) | y € 1i(Cy) }.

Combine the preceding two equations. Q.E.D.



CONTINUITY OF CONVEX FUNCTIONS

o If f: K" — RN is convex, then it is continuous.

ea = (—1,1) yx er1 =(1,1)

es = (—1,—1) Zk ey =(1,—1)

Proof: We will show that f is continuous at O.
By convexity, f is bounded within the unit cube
by the max value of f over the corners of the cube.

Consider sequence x;, — 0 and the sequences

Yk = Tk/||Tk|loos 26 = —Tk/||Tk]|co- Then
k) < (1= ll@rlloo) £(0) + |k lloo f (yr)

|k ]loo 1

= zpllo + 1 f(xy)

Take limit as k — oo. Since ||zg||cc — 0, we have

limsup ||z ||co f(yr) < 0, limsup Ixlloc f(zx) <0

so f(xx) — f(0). Q.E.D.

e Fxten<ion to continuitv over ri(dom( f))



CLOSURES OF FUNCTIONS

e The closure of a function f : X +— [—00,00] is
the function cl f : R — [—00, 00| with

epi(cl f) = cl(epi(f))
e The convez closure of f is the function cl f with

epi(élf) = Cl(conv (epi(f)))

e Proposition: For any f: X +— [—00, 00]

inf f(z)= inf (cl f)(x) = inf (cl f)(x).

reX rERM rERM

Also, any vector that attains the infimum of f over
X also attains the infimum of cl f and cl f.

e Proposition: For any f : X — |—00, 00]:

(a) cl f (or cl f) is the greatest closed (or closed
convex, resp.) function majorized by f.

(b) If f is convex, then cl f is convex, and it is
proper if and only if f is proper. Also,

(@ f)@) = f(). Ve ri(dom(f).
and if € ri(dom(f)) and y € dom(cl f),

(el f)(y) = lim f (y + a(z — y)).

al0



RECESSION CONE OF A CONVEX SET

e Given a nonempty convex set C, a vector d is
a direction of recession if starting at any x in C
and going indefinitely along d, we never cross the
relative boundary of C' to points outside C"

x+ade C, Veel, YVa>0

Recession Cone Ro

C

d

e Recession cone of C' (denoted by R¢): The set
of all directions of recession.

e Rc is a cone containing the origin.



RECESSION CONE THEOREM

e Let C be a nonempty closed convex set.

(a)
(b)

The recession cone R¢ is a closed convex
cone.

A vector d belongs to R¢ if and only if there
exists some vector x € C such that x + ad €
C for all o > 0.

Rc contains a nonzero direction if and only
if C' is unbounded.

The recession cones of C' and ri(C') are equal.

If D is another closed convex set such that
CND+# O, we have

Rcnp = Re N Rp
More generally, for any collection of closed
convex sets C;, © € I, where [ is an arbitrary

index set and N;c7C; is nonempty, we have

RﬂiEIC’i — m’LEIRCz



PROOF OF PART (B)

e Let d # 0 be such that there exists a vector

r € C with x +ad € C for all « > 0. We fix

x € C and a > 0, and we show that x + ad € C.

By scaling d, it is enough to show that ¢ +d € C.
For k=1,2,..., let

(zx — )

oh =z +kd,  dy— Id|
|2k — |
We have
di, |z — || d T — |z — x| x—
pr— 9 9 — O)
ldll Nzw =l lldll ~ llze =2l [lz& — ]l Iz — ]

so dr — d and x + dir — x + d. Use the convexity
and closedness of (' to conclude that x +d € C.



LINEALITY SPACE

e The lineality space of a convex set C', denoted by
L¢, is the subspace of vectors d such that d € R¢
and —d € R¢:

Lo =ReonN (—Rc)

e If d € Lc, the entire line defined by d is con-
tained in C, starting at any point of C.

e Decomposition of a Convex Set: Let C be a
nonempty convex subset of . Then,

C=Lc+(CNLE).

e Allows us to prove properties of C' on C' N Lé
and extend them to C.

e True also if L¢ is replaced by a subspace S C
Lc.
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