LECTURE 3

LECTURE OUTLINE

Differentiable Convex Functions
Convex and Affine Hulls
Caratheodory’s Theorem

Relative Interior

All figures are courtesy of Athena Scientific, and are used with permission.



DIFFERENTIABLE CONVEX FUNCTIONS

e Let C' C R” be a convex set and let f : k» — R
be differentiable over R".

(a) The function f is convex over C' iff

f(z) > f(x)+(z—x)Vf(x), Va,ze€C

(b) If the inequality is strict whenever = # z,
then f is strictly convex over C.



PROOF IDEAS
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z=az+ (1—a)y
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OPTIMALITY CONDITION

e Let C' be a nonempty convex subset of " and
let f:R"” — R be convex and differentiable over
an open set that contains C'. Then a vector z* € C
minimizes f over C' if and only if

V() (z—x*) >0, Vzedl.

Proof: If the condition holds, then
f(z) = f(&*)+(z—2*)'V f(z*) = f(z*), VzeC,

so x* minimizes f over C.

Converse: Assume the contrary, i.e., x* min-
imizes f over C and V f(z*)'(z —2*) < 0 for some
z € C. By differentiation, we have

flz* + a(z — %)) — f(z*)

lim = Vf(x*)(z—z*) <0

a0 Q

so f(z* + a(z — a*)) decreases strictly for suffi-

ciently small a > 0, contradicting the optimality
of z*. Q.E.D.



TWICE DIFFERENTIABLE CONVEX FNS

e Let C be a convex subset of " and let f :
" — R be twice continuously differentiable over

R,

(a) If V2f(x) is positive semidefinite for all x €
C', then f is convex over C.

(b) If V2f(x) is positive definite for all x € C,
then f is strictly convex over C.

(c) If C is open and f is convex over C, then
V2 f(x) is positive semidefinite for all z € C.

Proof: (a) By mean value theorem, for x,y € C

f@W) = f(@)+y—z) VI@)+3(y—=2)'V2f(s+aly—2))(y—z)

for some o € [0,1]. Using the positive semidefi-
niteness of V2 f, we obtain

fly) = fz) + @y —2)Vfz), Vazyel

From the preceding result, f is convex.

(b) Similar to (a), we have f(y) > f(z) + (y —
x)'V f(x) for all x,y € C with x # y, and we use
the preceding result.

(c) By contradiction ... similar.



CONVEX AND AFFINE HULLS

e (iven a set X C Rn:

e A convexr combination of elements of X is a
vector of the form Zgl o;x;, where x; € X, o >
0, and > ", a; = 1.

e The convex hull of X, denoted conv(X), is the
intersection of all convex sets containing X. (Can
be shown to be equal to the set of all convex com-
binations from X).

e The affine hull of X, denoted aff( X), is the in-
tersection of all affine sets containing X (an affine
set is a set of the form x + S, where S is a sub-
space).

e A nonnegative combination of elements of X is
a vector of the form > )" | «;x;, where z; € X and
«; > 0 for all s.

e The cone generated by X, denoted cone(X), is
the set of all nonnegative combinations from X:
— It is a convex cone containing the origin.
— It need not be closed!

— If X is a finite set, cone(X) is closed (non-
trivial to show!)



CARATHEODORY’S THEOREM

T4 Z2
conv(X)

Z1
Z2

(a) (b)

e Let X be a nonempty subset of R~.
(a) Every x # 0 in cone(X) can be represented

as a positive combination of vectors x1,...,Tm
from X that are linearly independent (so
m < n).

(b) Every x ¢ X that belongs to conv(X) can
be represented as a convex combination of
vectors z1,...,xm from X with m <n + 1.



PROOF OF CARATHEODORY’S THEOREM

(a) Let  be a nonzero vector in cone(X), and
let m be the smallest integer such that x has the
form > ", a;x;, where o; > 0 and z; € X for
all © = 1,...,m. If the vectors z; were linearly
dependent, there would exist A1,..., A\, with

Zm: )\Z'CU@' =0
1=1

and at least one of the \; is positive. Consider

m

Z(C‘fi — YA T4,

i=1
where v is the largest v such that a; —vA; > 0 for
all 2. This combination provides a representation
of x as a positive combination of fewer than m vec-
tors of X —a contradiction. Therefore, x1,...,Tm,
are linearly independent.

(b) Use “lifting” argument: apply part (a) to Y =
{(z,1) |z € X}.




AN APPLICATION OF CARATHEODORY

e The convex hull of a compact set is compact.

Proof: Let X be compact. We take a sequence
in conv(X) and show that it has a convergent sub-
sequence whose limit is in conv(X).

By Caratheodory, a sequence in conv(X) can

be expressed as {Zn+1 alz? }, where for all k£ and

i, af >0, z¥ € X, and 27;211 af = 1. Since the
sequence

{(a’f,...,ozﬁJrl,:U’f,...,:Uqlberl)}

is bounded, it has a limit point
{(041, ey On4+1,T1y .. ,:I?n_H)},

which must satisfy Ez oy = 1, and a; > 0,
x; € X for all 7.
The vector +1 a;x; belongs to conv(X)

and is a limit point of {Zn+11 (xkajk}, showing
that conv(X) is compact. Q.E.D.

e Note that the convex hull of a closed set need
not be closed!



RELATIVE INTERIOR

e < is a relative interior point of C, if x is an
interior point of C' relative to aff(C').

e ri(C') denotes the relative interior of C, i.e., the
set of all relative interior points of C.

e Line Segment Principle: If C is a convex set,
x € ri(C) and x € cl(C'), then all points on the
line segment connecting x and x, except possibly
x, belong to ri(C).

e Proof of case where x € C': See the figure.

e Proof of case where z ¢ (C: Take sequence
{zr} C C with xx — x. Argue as in the figure.



ADDITIONAL MAJOR RESULTS

e Let C be a nonempty convex set.

(a) ri(C') is a nonempty convex set, and has the
same affine hull as C.

(b) Prolongation Lemma: x € ri(C) if and
only if every line segment in C having x
as one endpoint can be prolonged beyond x
without leaving C.

z1 and 29 are linearly
independent, belong to
C' and span aff(C)

Proof: (a) Assume that 0 € C'. We choose m lin-
early independent vectors zi,...,zm, € C, where
m is the dimension of aff(C'), and we let

X = {i&@zz i&i<1, 047;>0,7Z—1,...,m}
1=1 1=1

(b) => is clear by the def. of rel. interior. Reverse:
take any x € ri(C'); use Line Segment Principle.




OPTIMIZATION APPLICATION

e A concave function f : R" — R that attains its
minimum over a convex set X at an x* € ri(X)
must be constant over X.

aff (X)

Proof: (By contradiction) Let z € X be such
that f(z) > f(x*). Prolong beyond z* the line
segment x-to-r* to a point x € X. By concavity
of f, we have for some a € (0, 1)

fla*) 2 af(z) + (1 —a)f(z),

and since f(x) > f(z*), we must have f(x*) >
f(x) - a contradiction. Q.E.D.

e Corollary: A linear function can attain a min-
inum only at the boundary of a convex set.
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