
LECTURE 3


LECTURE OUTLINE


Differentiable Convex Functions
• 

Convex and Affine Hulls • 

•	 Caratheodory’s Theorem 

Relative Interior • 

All figures are courtesy of Athena Scientific, and are used with permission.



DIFFERENTIABLE CONVEX FUNCTIONS


f(x) +∇f(x)�(z − x) 

• Let C ⊂ �n be a convex set and let f : �n �→ � 
be differentiable over �n. 

(a) The function f is convex over C iff 

f(z) ≥ f(x) + (z − x)�∇f(x), ∀ x, z ∈ C 

(b) If the inequality is strict whenever	 x =� z, 
then f is strictly convex over C. 



PROOF IDEAS


f(x) +
f
�
x + α(z − x)

� 
− f (x) 

α 



OPTIMALITY CONDITION


• Let C be a nonempty convex subset of �n and 
let f : �n �→ � be convex and differentiable over 
an open set that contains C. Then a vector x∗ ∈ C 
minimizes f over C if and only if 

∇f(x∗)�(z − x∗) ≥ 0, ∀ z ∈ C. 

Proof: If the condition holds, then 

f(z) ≥ f(x∗)+(z−x∗)�∇f(x∗) ≥ f(x∗), ∀ z ∈ C, 

so x∗ minimizes f over C. 
Converse: Assume the contrary, i.e., x∗ min­

imizes f over C and ∇f(x∗)�(z − x∗) < 0 for some 
z ∈ C. By differentiation, we have 

f
�
x∗ + α(z − x∗)

� 
− f(x∗)

lim = ∇f(x∗)�(z−x∗) < 0 
α 0 α↓

so f
�
x∗ + α(z − x∗)

� 
decreases strictly for suffi­

ciently small α > 0, contradicting the optimality 
of x∗. Q.E.D. 



TWICE DIFFERENTIABLE CONVEX FNS


• Let C be a convex subset of �n and let f : 
�n �→ � be twice continuously differentiable over 
�n. 

(a) If ∇2f(x) is positive semidefinite for all x ∈
C, then  f is convex over C. 

(b) If ∇2f(x) is positive definite for all x ∈ C, 
then f is strictly convex over C. 

(c) If C is open and f is convex over C, then  
∇2f(x) is positive semidefinite for all x ∈ C. 

Proof: (a) By mean value theorem, for x, y ∈ C 

f(y) =  f(x)+(y−x)�∇f(x)+ 1 (y−x)�∇2f
�
x+α(y−x)

�
(y−x)2 

for some α ∈ [0, 1]. Using the positive semidefi­
niteness of ∇2f , we obtain 

f(y) ≥ f(x) + (y − x)�∇f(x), ∀ x, y ∈ C


From the preceding result, f is convex.


(b) Similar to (a), we have f(y) > f(x) + (y − 
x)�∇f(x) for all x, y ∈ C with x =� y, and we use 
the preceding result. 

(c) By contradiction ... similar. 



CONVEX AND AFFINE HULLS


•	 Given a set X ⊂ �n: 

A convex combination of elements of X is a • 
vector of the form 

�m αixi, where  xi ∈ X, αi ≥
0, and 

�m
i=1 αi = 1. 

i=1 

• The convex hull of X, denoted conv(X), is the 
intersection of all convex sets containing X. (Can 
be shown to be equal to the set of all convex com­
binations from X). 

• The affine hull of X, denoted aff(X), is the in­
tersection of all affine sets containing X (an affine 
set is a set of the form x + S, where  S is a sub­
space). 

• A nonnegative combination of elements of X is 
a vector of the form 

�m αixi, where  xi ∈ X and i=1 
αi	≥ 0 for all i. 

• The cone generated by X, denoted cone(X), is 
the set of all nonnegative combinations from X: 
− It is a convex cone containing the origin. 
− It need not be closed! 
−	 If X is a finite set, cone(X) is closed (non­

trivial to show!) 



CARATHEODORY’S THEOREM


0 

• Let X be a nonempty subset of �n. 

(a) Every x = 0 in cone(� X) can be represented 
as a positive combination of vectors x1, . . . , xm 

from X that are linearly independent (so 
m ≤ n). 

(b) Every x /∈ X that belongs to conv(X) can 
be represented as a convex combination of 
vectors x1, . . . , xm from X with m ≤ n + 1. 



PROOF OF CARATHEODORY’S THEOREM


(a) Let x be a nonzero vector in cone(X), and 
let m be the smallest integer such that x has the 
form 

�m αixi, where  αi > 0 and xi ∈ X for i=1 
all i = 1, . . . ,m. If the vectors xi were linearly 
dependent, there would exist λ1, . . . , λm, with  

m� 
λixi = 0  

i=1 

and at least one of the λi is positive. Consider

m
�

(αi − γλi)xi,

i=1 

where γ is the largest γ such that αi − γλi ≥ 0 for 
all i. This combination provides a representation 
of x as a positive combination of fewer than m vec­
tors of X – a contradiction. Therefore, x1, . . . , xm, 
are linearly independent. 

(b) Use “lifting” argument: apply part (a) to Y = �
(x, 1) | x ∈ X

�
. 

�n 



AN APPLICATION OF CARATHEODORY


• The convex hull of a compact set is compact.


Proof: Let X be compact. We take a sequence 
in conv(X) and show that it has a convergent sub­
sequence whose limit is in conv(X). 

By Caratheodory, a sequence in conv(X) can 

be expressed as 
��n+1 

�
, where for all k and i=1 αi

kxi
k 

ki, αk ≥ 0, x ∈ X, and 
�n+1 αk = 1. Since the i i i=1 i 

sequence 

k k
�
(α1 

k , . . . , αn
k 
+1, x1 , . . . , xn+1)

� 

is bounded, it has a limit point 
�
(α1, . . . , αn+1, x1, . . . , xn+1)

�
, 

which must satisfy 
�n+1 αi = 1, and αi ≥ 0,i=1 

xi ∈ X for all i. 
The vector 

�n+1 αixi belongs to conv(X)i=1 

and is a limit point of 
��n+1 

�
, showing  i=1 αi

kxi
k


that conv(X) is compact. Q.E.D.


Note that the convex hull of a closed set need • 
not be closed! 



RELATIVE INTERIOR


• x is a relative interior point of C, if  x is an 
interior point of C relative to aff(C). 

• ri(C) denotes the relative interior of C, i.e., the  
set of all relative interior points of C. 

• Line Segment Principle: If  C is a convex set, 
x ∈ ri(C) and x ∈ cl(C), then all points on the 
line segment connecting x and x, except possibly 
x, belong to ri(C). 

α�


• Proof of case where x ∈ C: See the figure. 

• Proof of case where x /∈ C: Take sequence 
{xk} ⊂ C with xk → x. Argue as in the figure. 



ADDITIONAL MAJOR RESULTS


• Let C be a nonempty convex set. 

(a) ri(C) is a nonempty convex set, and has the 
same affine hull as C. 

(b)	 Prolongation Lemma: x ∈ ri(C) if and 
only if every line segment in C having x 
as one endpoint can be prolonged beyond x 
without leaving C. 

0 

Proof: (a) Assume that 0 ∈ C. We choose m lin­
early independent vectors z1, . . . , zm ∈ C, where  
m is the dimension of aff(C), and we let 

m	 m
� � 

X = 
� 

αizi 

��� 
� 

αi < 1, αi > 0, i = 1, . . . ,m  
i=1 i=1 

(b) => is clear by the def. of rel. interior. Reverse:

take any x ∈ ri(C); use Line Segment Principle.




OPTIMIZATION APPLICATION


• A concave function f : �n �→ � that attains its 
minimum over a convex set X at an x ∈ ri(X)∗ 

must be constant over X. 

aff(X) 

Proof: (By contradiction) Let x ∈ X be such 
that f(x) > f(x∗). Prolong beyond x the line ∗ 

segment x-to-x to a point x ∈ X. By concavity
∗ 

of f , we have for some α ∈ (0, 1) 

f(x∗) ≥ αf(x) + (1  − α)f(x), 

and since f(x) > f(x∗), we must have f(x∗) > 
f(x) - a contradiction. Q.E.D. 

• Corollary: A linear function can attain a min­
inum only at the boundary of a convex set. 
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