[image:]
 CMR ENGINEERING COLLEGE
 Kandlakoya (V), Medchal (M), R.R.Dist.
 Department Of Information Technology

 Subject - SOFTWARE ENGINEERING
 Step Material

1. What is software engineering?
Software engineering is a discipline in which theories, methods and tools are applied to develop professional software.
2. What is Software?
Software is nothing but a collection of computer programs that are related documents that are indented to provide desired features, functionalities and better performance.
3. What are the characteristics of the software?
· Software is engineered, not manufactured.
· Software does not wear out.
· Most software is custom built rather than being assembled from components.
4. What are the various categories of software?
· System software
· Application software
· Engineering/Scientific software
· Embedded software
5. What are the challenges in software?
· Copying with legacy systems.
· Heterogeneity challenge
· Delivery times challenge.
6. Define software process.

Software process is defined as the structured set of activities that are required to develop the software system.
7. What are the fundamental activities of a software process?
· Specification
· Design and implementation
· Validation
· Evolution
8. What are the umbrella activities of a software process?

· Software project tracking and control.
· Risk management.
· Software Quality Assurance.
· Formal Technical Reviews.
· Software Configuration Management.
· Work product preparation and production.
· Reusability management.
· Measurement.
9. What are the merits of incremental model?
i) The incremental model can be adopted when there is less number of people involved in the project.
ii) Technical risks can be managed with each increment.
iii) For a very small time span, at least core product can be delivered to the customer.
10. List the task regions in the Spiral model.
· Customer communication - it is suggested to establish customer communication.
· Planning – All planning activities are carried out
· Risk analysis – The tasks required to calculate technical and management risks.

· Engineering – tasks required to build one or more representations of applications
· Construct and release – tasks required to construct, test, install the applications
· Customer evaluation - tasks are performed and implemented at installation stage based on the customer evaluation.
11. What are the drawbacks of spiral model?
i) It is based on customer communication. If the communication is not proper then the software product that gets developed will not be the up to the mark.
ii) It demands considerable risk assessment. If the risk assessment is done properly then only the successful product can be obtained.
12. What is System Engineering?
System Engineering means designing, implementing, deploying and operating systems which include hardware, software and people.
13. List the process maturity levels in SEIs CMM.
Level 1: Initial - Few processes are defined and individual efforts are taken.
Level 2: Repeatable – To track cost schedule and functionality basic project management processes are established.
Level 3: Defined – The process is standardized, documented and followed.
Level 4: Managed – Both the software process and product are quantitatively understood and controlled using detailed measures.
Level 5: Optimizing – Establish mechanisms to plan and implement change.
14. What is an effector process?
The effector process is a process that verifies itself. The effector process exists in certain criteria.
15. Define the computer based system.
The computer based system can be defined as “a set or an arrangement of elements that are organized to accomplish some predefined goal by processing information”.

16. What does verification represent?

Verification represents the set of activities that are carried out to confirm that the software correctly implements the specific functionality.
16. What does Validation represent?
Validation represents the set of activities that ensure that the software that has been built is satisfying the customer requirements.
17. What are the steps followed in testing?
1) Unit testing - The individual components are tested in this type of testing.
2) Module testing – Related collection of independent components are tested.
3) Sub-system testing –Various modules are integrated into a subsystem and the whole subsystem is tested.
4) System testing – The whole system is tested in this system.
5) Acceptance testing – This type of testing involves testing of the system with customer data.
18. What is the use of CMM?
Capability Maturity Model is used in assessing how well an organization’s processes allow to complete and manage new software projects.
19. Name the Evolutionary process Models.
i. Incremental model
ii. Spiral model
iii. WIN-WIN spiral model
iv. Concurrent Development
20. What is meant by Software engineering paradigm?
The development strategy that encompasses the process, methods and tools and generic phases is often referred to as a process model or software engineering paradigm.

21.

What are the various elements of a computer based system?
1. Software 2. Hardware
3. People 4. Database

5. Documentation 5. Procedures.
23. Define dynamic verification?

Dynamic verification is performed during the execution of software and dynamically checks its behavior.
24. Define static verification?
Static verification is a process to check some requirements of software doing a physical inspection of it. Example: software metric calculation.

UNIT – II
REQUIREMENTS ANALYSIS AND SPECIFICATION
1. What is requirement engineering?
Requirement engineering is the process of establishing the services that the customer requires from the system and the constraints under which it operates and is developed.
2. What are the various types of traceability in software engineering?
i. Source traceability – These are basically the links from requirement to stakeholders
ii. Requirements traceability – These are links between dependant requirements.
iii. Design traceability – These are links from requirements to design.
3. Define software prototyping.
Software prototyping is defined as a rapid software development for validating the requirements.
4. What are the benefits of prototyping?
i. Prototype serves as a basis for deriving system specification.
ii. Design quality can be improved.

iii. System can be maintained easily.
iv. Development efforts may get reduced.
v. System usability can be improved.
5. What are the prototyping approaches in software process?
i. Evolutionary prototyping – the initial prototype is prepared and it is then refined through number of stages to final stage.
ii. Throw-away prototyping – a rough practical implementation of the system is produced. The requirement problems can be identified from this implementation.
6. What are the advantages of evolutionary prototyping?
i. Fast delivery of the working system.
ii. User is involved while developing the system.
iii. More useful system can be delivered.
iv. Specification, design and implementation work in co-ordinate manner.
7. What are the various Rapid prototyping techniques?
i. Dynamic high level language development.
ii. Database programming.
iii. Component and application assembly.
8. What is the use of User Interface prototyping?
This prototyping is used to pre-specify the look and feel of user interface in an effective way.
9. What are the characteristics of SRS?
i. Correct – The SRS should be made up to date when appropriate requirements are identified.
ii. Unambiguous – When the requirements are correctly understood then only it is possible to write unambiguous software.
iii. Complete – To make SRS complete, it should be specified what a software designer wants to create software.

iv. Consistent – It should be consistent with reference to the functionalities identified.
v. Specific – The requirements should be mentioned specifically.
vi. Traceable – What is the need for mentioned requirement?
10. What is data modeling?
Data modeling is the basic step in the analysis modeling. In data modeling the data objects are examined independently of processing. The data model represents how data are related with one another.
11. What is a data object?
Data object is a collection of attributes that act as an aspect, characteristic, quality, or descriptor of the object.
12. What are attributes?
Attributes are the one, which defines the properties of data object.
13. What is cardinality in data modeling?
Cardinality in data modeling, cardinality specifies how the number of occurrences of one object is related to the number of occurrences of another object.
14. What does modality in data modeling indicates?
Modality indicates whether or not a particular data object must participate in the relationship.
15. What is ERD?
Entity Relationship Diagram is the graphical representation of the object relationship pair. It is mainly used in database applications.
16. What is DFD?
Data Flow Diagram depicts the information flow and the transforms that are applied on the data as it moves from input to output.

17. What does Level0 DFD represent?

Level 0 DFD is called as fundamental system model or „context model‟. In the context model the entire software system is represented by a single bubble with
input and output indicated by incoming and outgoing arrows.
18. What is a state transition diagram?
State transition diagram is basically a collection of states and events. The events cause the system to change its state. It also represents what actions are to be taken on the occurrence of particular event.
19. Define Data Dictionary.
The data dictionary can be defined as an organized collection of all the data elements of the system with precise and rigorous definitions so that user and system analyst will have a common understanding of inputs, outputs, components of stores and intermediate calculations.
20. What are the elements of Analysis model?
i. Data Dictionary
ii. Entity Relationship Diagram
iii. Data Flow Diagram
iv. State Transition Diagram
v. Control Specification
vi. Process specification.
21. What are functional requirements?
Functional requirements are” statements of services the system should provide how the system should react to particular input and how the system should behave in particular situation.
22. What are non functional requirements?
Non functional requirements are constraints on the services or functions offered by the system such as timing constraints, constraints on the development process, standards, etc……..

23. What is the outcome of feasibility study?

The outcome of feasibility study is the result obtained from the following questions:
· which system contributes to organizational objectives?
· whether the system can be engineered? Is it within the budget?
· whether the system can be integrated with other existing system?
24. What is meant by structural analysis?
The structural analysis is mapping of problem domain to flows and transformations. The system can be modeled by using Entity Relationship diagram, Data flow diagram and Control flow diagrams.

UNIT – III SOFTWARE DESIGN
1. What are the elements of design model?
i. Data design
ii. Architectural design
iii. Interface design
iv. Component-level design
2. Define design process.
Design process is a sequence of steps carried through which the requirements are translated into a system or software model.
3. List the principles of a software design.
i. The design process should not suffer from “tunnel vision”
ii. The design should be traceable to the analysis model.
iii. The design should exhibit uniformity and integration.
iv. Design is not coding.
v. The design should not reinvent the wheel.
4. What is the benefit of modular design?

Changes made during testing and maintenance becomes manageable and they do not affect other modules.
5. What is a cohesive module?
A cohesive module performs only “one task” in software procedure with little interaction with other modules. In other words cohesive module performs only one thing.
6. What are the different types of Cohesion?
i. Coincidentally cohesive - The modules in which the set I\of tasks are related with each other loosely.
ii. Logically cohesive – A module that performs the tasks that are logically related with each other.
iii. Temporal cohesion – The module in which the tasks need to be executed in some specific time span.
iv. Procedural cohesion – When processing elements of a module are related with one another and must be executed in some specific order.
v. Communicational cohesion – When the processing elements of a module share the data then such module is called communicational cohesive.
7. What is coupling?
Coupling is the measure of interconnection among modules in a program structure. It depends on the interface complexity between modules.
8. What are the various types of coupling?
i. Data coupling – The data coupling is possible by parameter passing or data interaction.
ii. Control coupling – The modules share related control data in control coupling.
iii. Common coupling – The common data or a global data is shared among modules.
iv. Content coupling – Content coupling occurs when one module makes use of data or control information maintained in another module.

9. What are the common activities in design process?

i. System structuring – The system is sub divided into principle subsystems components and communications between these subsystems are identified.
ii. Control modeling – A model of control relationships between different parts of the system is established.
iii. Modular decomposition – The identified subsystems are decomposed into modules.
10. What are the benefits of horizontal partitioning?
i. Software that is easy to test.
ii. Software that is easier to maintain.
iii. Propagation of fewer side effects.
iv. Software that is easier to extend.
11. What is vertical partitioning?
Vertical partitioning often called factoring suggests that the control and work should be distributed top-down in program structure.
12. What are the advantages of vertical partitioning?
i. These are easy to maintain changes.
ii. They reduce the change impact and error propagation.
13. What are the various elements of data design?
i. Data object – The data objects are identified and relationship among various data objects can be represented using ERD or data dictionaries.
ii. Databases – Using software design model, the data models are translated into data structures and data bases at the application level.
iii. Data warehouses – At the business level useful information is identified from various databases and the data warehouses are created.
14. List the guidelines for data design.
i. Apply systematic analysis on data.
ii. Identify data structures and related operations.
iii. Establish data dictionary.

iv. Use information hiding in the design of data structure.
v. Apply a library of useful data structures and operations.
15. Name the commonly used architectural styles.
i. Data centered architecture.
ii. Data flow architecture.
iii. Call and return architecture.
iv. Object-oriented architecture.
v. Layered architecture.
16. What is Transform mapping?
The transform mapping is a set of design steps applied on the DFD in order to map the transformed flow characteristics into specific architectural style.
17. What is a Real time system?
Real time system is a software system in which the correct functionalities of the system are dependent upon results produced by the system and the time at which these results are produced.
18. What are the objectives of Analysis modeling?
i. To describe what the customer requires.
ii. To establish a basis for the creation of software design.
iii. To devise a set of valid requirements after which the software can be built.
19. What is an Architectural design?
The architectural design defines the relationship between major structural elements of the software, the “design patterns” that can be used to achieve the requirements that have been defined for the system.
20. What is data design?
The data design transforms the information domain model created during analysis into the data structures that will be required to implement the software.
21. What is interface design?

The interface design describes how the software communicates within itself, with systems that interoperate with it, and with humans who use it.
22. What is component level design?
The component level design transforms structural elements of the software architecture into a procedural description of software components.
23. What is software design?
Software design is an iterative process through which the requirements are translated into a “blueprint” for constructing the software.
24. What is user interface design?
User interface design creates an effective communication medium between a human and a computer.
25. What is system design?
System design process involves deciding which system capabilities are to be implemented in software and which in hardware.
26. What are data acquisition systems?
Systems that collect data from sensors for subsequent processing and analysis are termed as data acquisition systems. Data collection processes and processing processes may have different periods and deadlines.

UNIT – IV TESTING AND IMPLEMENTATION
1. Define software testing?
Software testing is a critical element of software quality assurance and represents the ultimate review of specification, design, and coding.
2. What are the objectives of testing?
i. Testing is a process of executing a program with the intend of finding an error.
ii. A good test case is one that has high probability of finding an undiscovered error.
iii. A successful test is one that uncovers as an-yet undiscovered error.

3. What are the testing principles the software engineer must apply while performing the software testing?
i. All tests should be traceable to customer requirements.
ii. Tests should be planned long before testing begins.
iii. The pareto principle can be applied to software testing-80% of all errors uncovered during testing will likely be traceable to 20% of all program modules.
iv. Testing should begin “in the small” and progress toward testing “in the large”.
v. Exhaustive testing is not possible.
vi. To be most effective, an independent third party should conduct testing.
4. What are the two levels of testing?
i. Component testing - Individual components are tested. Tests are derived from developer’s experience.
ii. System Testing - The group of components are integrated to create a system or sub-system is done. These tests are based on the system specification.
5. What are the various testing activities?
i. Test planning
ii. Test case design
iii. Test execution
iv. Data collection
v. Effective evaluation
6. Write short note on black box testing.
The black box testing is also called as behavioral testing. This method Fully focus on the functional requirements of the software. Tests are derived that fully exercise all functional requirements.
7. What is equivalence partitioning?
Equivalence partitioning is a black box technique that divides the input domain into classes of data. From this data test cases can be derived. Equivalence class represents a set of valid or invalid states for input conditions.

8. What is a boundary value analysis?
A boundary value analysis is a testing technique in which the elements at the edge of the domain are selected and tested. It is a test case design technique that complements equivalence partitioning technique.
9. What are the reasons behind to perform white box testing?
There are three main reasons behind performing the white box testing.
1. Programmers may have some incorrect assumptions while designing or implementing some functions.
2. Certain assumptions on flow of control and data may lead programmer to make design errors. To uncover the errors on logical path, white box testing is must.
3. There may be certain typographical errors that remain undetected even after syntax and type checking mechanisms. Such errors can be uncovered during white box testing.
10. What is cyclomatic complexity?
Cyclomatic complexity is software metric that gives the quantitative Measure of logical complexity of the program.
11. How to compute the cyclomatic complexity?
The cyclomatic complexity can be computed by any one of the following ways.
1. The numbers of regions of the flow graph correspond to the cyclomatic complexity.
2. Cyclomatic complexity (G), for the flow graph G, is defined as:
V(G)=E-N+2, E -- number of flow graph edges, N -- number of flow graph nodes
3. V(G) = P+1 Where P is the number of predicate nodes contained in the flow graph.
12. Distinguish between verification and validation.
Verification refers to the set of activities that ensure that software correctly implements a specific function.
Validation refers to a different set of activities that ensure that the software that has been built is traceable to the customer requirements.

i. What are the various testing strategies for conventional software
ii. Unit testing
iii. Integration testing.
iv. Validation testing.
v. System testing.
13. Write about drivers and stubs.
Drivers and stub software need to be developed to test incompatible software. The “driver” is a program that accepts the test data and prints the relevant results.
The “stub” is a subprogram that uses the module interfaces and performs the minimal data manipulation if required.
14. What are the approaches of integration testing?
The integration testing can be carried out using two approaches.
1. The non-incremental testing.
2. Incremental testing.
16. What are the advantages and disadvantages of big-bang? Advantage:
This approach is simple. Disadvantages:
It is hard to debug.
It is not easy to isolate errors while testing.
In this approach it is not easy to validate test results.
17. What are the benefits of smoke testing?
· Integration risk is minimized.
· The quality of the end-product is improved.
· Error diagnosis and correction are simplified.

· Assessment of program is easy.
18. What are the conditions exists after performing validation testing?
· The function or performance characteristics are according to the specifications and are accepted.
· The requirement specifications are derived and the deficiency list is created.
19. Distinguish between alpha and beta testing
Alpha and beta testing are the types of acceptance testing.
Alpha test: The alpha testing is attesting in which the version of complete software is tested by the customer under the supervision of developer. This testing is performed at developer’s site.
Beta test : The beta testing is a testing in which the version of the software is tested by the customer without the developer being present. This testing is performed at customer’s site.
20. What are the various types of system testing?
1. Recovery testing – is intended to check the system’s ability to recover from failures.
2. Security testing – verifies that system protection mechanism prevent improper penetration or data alteration.
3. Stress testing – Determines breakpoint of a system to establish maximum service level.
4. Performance testing – evaluates the run time performance of the software, especially real-time software.
21. Define debugging.
Debugging is defined as the process of removal of defect. It occurs as a consequence of successful testing.
22. What are the common approaches in debugging? Brute force method:
The memory dumps and run-time tracks are examined and program with write statements is loaded to obtain clues to error causes.

Back tracking method:
The source code is examined by looking backwards from symptom to potential causes of errors.
Cause elimination method:
This method uses binary partitioning to reduce the number of locations where errors can exists
23. What is meant by structural testing?
In structural testing derivation of test cases is according to program structure. Hence knowledge of the program is used to identify additional test cases.
24. What is meant by regression testing?
Regression testing is used to check for defects propagated to other modules by changes made to existing program. Thus, regression testing is used to reduce the side effects of the changes.
25. What is meant by unit testing?
The unit testing focuses verification effort on the smallest unit of software design, the software component or module.
15. What are the approaches of integration testing?
The integration testing can be carried out using two approaches.
1. The non-incremental testing.
2. Incremental testing.
16. What are the advantages and disadvantages of big-bang? Advantage:
This approach is simple. Disadvantages:
It is hard to debug.
It is not easy to isolate errors while testing.
In this approach it is not easy to validate test results.

· What are the benefits of smoke testing?
· Integration risk is minimized.
· The quality of the end-product is improved.
· Error diagnosis and correction are simplified.
· Assessment of program is easy.
17. What are the conditions exists after performing validation testing?
· The function or performance characteristics are according to the specifications and are accepted.
· The requirement specifications are derived and the deficiency list is created.
18. Distinguish between alpha and beta testing
Alpha and beta testing are the types of acceptance testing.
Alpha test: The alpha testing is attesting in which the version of complete software is tested by the customer under the supervision of developer. This testing is performed at developer’s site.
Beta test: The beta testing is a testing in which the version of the software is tested by the customer without the developer being present. This testing is performed at customer’s site.
19. What are the various types of system testing?
1. Recovery testing – is intended to check the system’s ability to recover from failures.
2. Security testing – verifies that system protection mechanism prevent improper penetration or data alteration.
3. Stress testing – Determines breakpoint of a system to establish maximum service level.
4. Performance testing – evaluates the run time performance of the software, especially real-time software.
21. Define debugging.
Debugging is defined as the process of removal of defect. It occurs as a consequence of successful testing.

22. What are the common approaches in debugging?
Brute force method:
The memory dumps and run-time tracks are examined and program with write statements is loaded to obtain clues to error causes.
Back tracking method:
The source code is examined by looking backwards from symptom to potential causes of errors.
Cause elimination method:
This method uses binary partitioning to reduce the number of locations where errors can exists
23. What is meant by structural testing?
In structural testing derivation of test cases is according to program structure. Hence knowledge of the program is used to identify additional test cases.
24. What is meant by regression testing?
Regression testing is used to check for defects propagated to other modules by changes made to existing program. Thus, regression testing is used to reduce the side effects of the changes.
25. What is meant by unit testing?
The unit testing focuses verification effort on the smallest unit of software design, the software component or module.

METRICS AND MEASURES
1. Define measure.
Measure is defined as a quantitative indication of the extent, amount, dimension, or size of some attribute of a product or process.
2. Define metrics.
Metrics is defined as the degree to which a system component, or process possesses a given attribute.

3. What are the types of metrics
Direct metrics – It refers to immediately measurable attributes. Example – Lines of code, execution speed.
Indirect metrics – It refers to the aspects that are not immediately quantifiable or measurable. Example – functionality of a program.
4. Write short note on the various estimation techniques.
Algorithmic cost modeling – the cost estimation is based on the size of the software.
Expert judgment – The experts from software development and the application domain.
Estimation by analogy – The cost of a project is computed by comparing the project to a similar project in the same application domain.
Parkinson’s Law – The cost is determined by available resources rather than by objective assessment.
Pricing to win – The project costs whatever the customer ready to spend it.
5. What is COCOMO model?
COnstructive COst MOdel is a cost model, which gives the estimate of number of man-months it will take to develop the software product.
6. Give the procedure of the Delphi method.
1. The co-coordinator presents a specification and estimation form to each expert.
2. Co-coordinator calls a group meeting in which the experts discuss estimation issues with the coordinator and each other.
3. Experts fill out forms anonymously.
4. Co-coordinator prepares and distributes a summary of the estimates.
5. The Co-coordinator then calls a group meeting.
7. What is the purpose of timeline chart?
The purpose of the timeline chart is to emphasize the scope of the individual task. Hence set of tasks are given as input to the timeline chart.

8. What is EVA?
Earned Value Analysis is a technique of performing quantitative analysis of the software project. It provides a common value scale for every task of software project. It acts as a measure for software project progress.
9. What are the metrics computed during error tracking activity? Errors per requirement specification page.
Errors per component-design level Errors per component-code level DRE-requirement analysis
DRE-architectural analysis DRE-component level design DRE-coding.
10. What is software maintenance?
Software maintenance is an activity in which program is modified after it has been put into use.
11. Define maintenance.
Maintenance is defined as the process in which changes are implemented
By either modifying the existing system’s architecture or by adding new components to the system.
12. What are the types of software maintenance?
Corrective maintenance – Means the maintenance for correcting the software faults.
Adaptive	maintenance	–	Means	maintenance	for	adapting	the	change	in environment.
Perfective maintenance – Means modifying or enhancing the system to meet the new requirements.
Preventive maintenance – Means changes made to improve future maintainability.

13. How the CASE tools are classified?
CASE tools can be classified by a. By function or use
b. By user type (e.g. manager, tester), or
c. By stage in software engineering process (e.g. requirements, test).
14. What are the types of static testing tools? There are three types of static testing tools.
Code based testing tools – These tools take source code as input and generate test cases.
Specialized testing tools – Using this language the detailed test specification can be written for each test case.
Requirement-based testing tools – These tools help in designing the test cases as per user requirements.
15. What is meant by Software project management?
Software project management is an activity of organizing, planning and scheduling software projects.
16. What is meant by software measurement?
Software measurement means deriving a numeric value for an attribute of a software product or process.
17. What is meant by software cost estimation?
The software cost estimation is the process of predicting the resources required for software development process.
18. What is meant by CASE tools?
The computer aided software engineering tools automatic the project management activities, manage all the work products. The CASE tools assist to perform various activities such as analysis, design, coding and testing.
19. What is meant by Delphi method?
The Delphi technique is an estimation technique intended to active a common agreement for estimation efforts.

20. What is meant by software evolution?
Software evolution is a process of managing the changes in the software.
21. Derive ZIP‟s law. ZIP‟s first law of the form, fr r = C (or) nr = Cn / r
C  constant
r  rank for tokens
fr  frequency of occurrence
22. What is software configuration management (SCM)?
Software configuration management is the art of identifying, organizing, and controlling modifications to the software being built by a programming team.
23. What is meant by risk management?
Risk management is an activity in which risks in the software projects are identified.
24. What is meant by software project scheduling?
Software project scheduling is an activity that distributes estimated effort across the planned project duration by allocating the effort to specified software engineering tasks.
25. Write about software change strategies.
The software change strategies that could be applied separately or together are:
Software	maintenance	–	The	changes	are	made	in	the	software	due	to requirements.
Architectural transformation – It is the process of changing one architecture into another form.
Software re-engineering – New features can be added to existing system and then the system is reconstructed for better use of it in future.

PART-B
1. Describe evolutionary process models.(16)

2. i.Explain the Software Engineering Myths (8)

ii.Write a note on Capability Maturity Model activities and its levels in detail. (8)

3. Explain the Win-Win spiral Model with neat diagram.

4. Explain the various phases of software development life cycle and identify deliverables at each phase?
5. i. What is prototyping? Explain the types of prototyping?(8)

ii. Explain the prototype paradigm in process models.(8)

6. i. Explain cocomo model for estimation (8)

ii. What is the process of Delphi method. State the advantages and disadvantages of this method. (8)
7. i. Explain Component Based Development model in detail. [8] ii.Expalin RAD model.(8)
8. How the cost of the s/w is estimated using i)Function point metric model ii)Lines of Code model
iii) Cocomo model.
9. Explain about Project Scheduling and its methods.
10. i. How is earned value computed to assess the progress? [8]

ii. How do you differentiate software engineering from system engineering? [8]

UNIT-II
PART-B

1. State and explain the requirements engineering tasks in detail.
2. Explain the execution of seven distinct functions accomplished in requirement engineering process.
3. Explain functional and behavioral models for software requirement process.
4. What is the purpose of feasibility study? Explain the phases and issues involved in feasibility study?
5. Describe the primary differences between structured analyses and object oriented analysis.
6. What is the difference between SRS document and design document? What are the contents we should contain in the SRS document and design document.
7. Describe function point analysis with a neat example. With an example explain about DFD. [8]
8. Write a detailed note on scenario based modeling.
9. Consider a simple “Online Vehicle Purchase System”. Apply scenario based modeling and draw the appropriate diagrams for it.
10. Explain the requirement s engineering process. Why is it difficult to gain a clear understanding of what the customer wants?
UNIT-III PART-B
1. Explain the fundamental software design concepts Explain various modularity and Control system commonly used on any organizational module
2. What are the good characteristics of good design? Discuss briefly about modular design and architectural design
3. i.What is transform mapping? Explain the process in detail (8)

ii. Explain data design in detail.
4. 	Explain the core activities involved in user interface design process with necessary block diagram.
5. Discuss about software Architectural design in detail.
6. Explain clearly the concepts of coupling and cohesion? For each type of coupling give an example of two components coupled in that way?
7. Explain the components Data flow diagram. Draw a DFD of level-3 for Railway ticket Reservation system
8. What are the characteristics of a good user interface design? Describe how UID may be developed for a data acquision system.
9. Tamil Nadu Electricity Board (TNEB) would like to automate its billing
process. Customers apply for a connection (domestic/commercial).EB staff take readings and update the system. Each customer is required to pay charges bi-monthly according to the rates set of the type of connection. Customers can choose to pay either by cash/card.
A bill is generated on payment. Monthly reports are provided to EB Manager.
i. Give a name for the system
ii. Draw the Level – 0 DFD(Context Flow diagram)
iii. Draw the Level-DFD

UNIT-IV
PART-B
1. Discuss on
i. Black box testing
ii. Regression testing
iii. White box testing
iv. Integration testing
2. What is Boundary value analysis? Explain the technique specifying rules and is usage with the help of an example

3. What is Equivalence class partitioning? List rules used to define valid and invalid Equivalence class. Explain the technique using example
4. i. Write a note on unit testing (8)
ii. Explain Regression testing in detail (8)
5. Define Black box testing and white box testing .Explain the importance of testing boundary values with an example
6. Write elaborately on white box testing for software, How do you develop test suites?
7. i. Explain software implementation techniques what is the percentage in total cost of the project? How do you expedite the implementation stage (8)
ii. What is meant by control flow testing? Is it always falling with data flow in case of software? Justify? (8)
8. Write the program for sorting of n numbers. Draw the flow char, flow graph, find out the cyclomatic complexity
9. i. Enumerate the various types of software test/which type of testing is suitable for boundary condition? Justify (6)
ii. Why is testing important? (4)
iii. Narrate the path testing procedure in detail with sample code (6)
10. i. What is meant by system testing? Explain different types of system testing in detail(8)
ii. Explain the debugging process in detail (8)

UNIT-IV
PART-B
1. i. Explain the methods of decomposition for software cost estimation. (8)
ii. Write short notes on the various estimation techniques.(8)
2. i. Explain about Cocomo II model cost estimation.(8)
ii. Write about the types of project plan.(8)

3. i. What Questions need to be answered in order to develop a project plan? (Or) Write a short note on W5HH principle? (8)
ii. Mention the challenges of risk management. (8)
4. Explain RMMM.
5. Discuss Decision tree to support Make/buy decision
6. i. Explain the basic principles of software project scheduling (8)
ii. Explain the relationship between people and effort with diagram (8)
7. i. How to computer a task set selector value for a project? Explain with suitable Illustration (8)
ii. How to track the schedule for the project? Explain in detail (8)
8. i. Explain the various technical metrics and measures for software? (8)
ii. Write a short note on Earned value Analysis (8)
9. i. What are the metrics for small organizations? Discuss (10)
ii. Write a short note on Software cyclomatic complexity metric (6)
10. i. Explain the scope and importance of software metrics (10)
ii. What are the attributes that should be encompassed by effective software metrics (6)

PART – B
1. Explain Win –Win spiral model and evolutionary models of software life Cycles. Compare with object oriented life cycle (Nov/Dec 2005)
The Win-Win spiral approach is an extension of the spiral approach. The phase in this approach is same as the phase in the spiral approach. The only difference is that at the time of the identifying the requirements, the development team and the customer hold discussion and negotiate on the requirements that need to be included in the current iteration of the software.
[image:]

The approach is called Win-Win because it is a winning situation for the development team and also for the customer. The customer wins by getting the product that fulfils most of the requirements while the development team wins by delivering software which is developed with all the requirements established after negotiations with the customer. The Win-Win approach is generally used when you have time-bound releases.

TheEvolutionaryModel

This approach is based on the idea of rapidly developing an initial software implementation from very abstract specifications and modifying this according to your appraisal. Each program version inherits the best features from earlier versions. Each version is refined based upon feedback from yourself to produce a system which satisfies your needs. At this point the system may be delivered or it may be re- implemented using a more structured approach to enhance robustness and maintainability. Specification, development and validation activities are concurrent with strong feedback between each.

[image:]

2. which type of applicationwould suit RAD model? (May/June 2006) Suitability of RAD
The following criteria can be evaluated to determine whether the development would suit a RAD style:

Project Scope: If the scope is focused and the business objectives are well defined and narrow, then the project is suitable for RAD. Conversely if the scope of the business objectives is obscure or broad then the project is unsuitable for RAD.

Project Data: Data for the project already exists (completely or in part). The project largely comprises analysis or reporting of the data then the project is suitable for RAD. However, if the Data is complex and voluminous and therefore must be analysed, designed and created within the scope of the project, then the project is unsuitable for RAD.

Project Decisions: If project or development decisions can be made by a small number of people who are available and, preferably co-located, then it is suitable for RAD. If many people must be involved in the decisions on the project, the decision makers are not available on a timely basis or they are geographically dispersed, then the project is unsuitable for RAD.

Project Team: If the project team is small (preferably six people or fewer) then it is suitable for RAD; but if the project team is large or there are multiple teams whose work needs to be coordinated, then it is unsuitable for RAD.

Project Technical Architecture: When the technical architecture is defined and clear and the key technology components are in place and tested, the architecture is suitable for RAD. Therefore if the technical architecture is unclear and much of the technology will be used for the first time within the project, then it is unsuitable for RAD.

Project Technical Requirements: If the project technical requirements (response times, throughput, database sizes, etc) are reasonable and well within the capabilities of the technology being used, then the project is suitable for RAD. In fact targeted performance should be less than 70% of the published limits of the technologies. However if the project technical requirements are tight for the equipment to be used, then the project is unsuitable for RAD.

3. Describe the steps involved in Risk management (May/June 2006)

The key steps to risk management are summarized below.

· Risk Assessment

· Risk Reduction / Minimisation / Containment

· Risk Monitoring

· Risk Reporting

· Risk Evaluation
[image:]

Risk Assessment
The goal of risk assessment is to identify the risk factors that are a part of the activity being undertaken. Basically, it's about working out what could go wrong. For example, the task could be attending a client meeting. The possible risk factors would include

· Distance from office to client's premises

· Number of people having to attend meeting

· What materials are required for meeting (eg. Laptop, projector…etc)

· Availability of cabs

· Availability of public transport

· Time of meeting, eg. Midday, peak hour

The more risk factors there are with a given task, the more that can go wrong.

Risk Evaluation
Once you have identified the risk factors, then you have to work out what impact they can have on the task. Following the previous example, what would be the impact of arriving at the meeting late?

· Would you lose the account?

· Would you get fired by your boss?

· Would it have an impact on your next review?

· Nothing, the client didn't mind.

If the impact is low, the risk doesn't require much attention.

Risk Reduction
Risk reduction can also be considering risk containment or minimisation. What term you use doesn't matter as long as you are consistent. The are two parts to risk reduction

· Plans or actions that can be taken to reduce the risk

· Introduction of strategies that will minimize the impact of the risk

In getting to our client meeting on time we could take the following actions

· Leave earlier (allow more travel time)

· Shift the meeting to non peak travel time

· Call the client to let them know we are running late

The idea is to avoid the risk altogether but if that's not possible, have plans in place that can minimize the impact.
Risk Monitoring
Risk monitoring has two dimensions to it. Firstly it's about keeping an eye on the risks that you've already identified to see if anything has changed, if the impact has increased or decrease, which could require action. And secondly, to see if there are any new risks that have arisen during the project.

For example, while we're on our way to the client meeting, we could be keeping an eye on the time while listening to traffic reports for any potential traffic delays. The most important thing to remember is that just because we have identified risks upfront, that doesn't mean new ones won't emerge.
Risk Reporting
Risk reporting is about on going awareness and the effectiveness of any actions or strategies taken to contain or reduce risk. For example calling your colleagues about traffic delays or train cancellations. The goal of risk reporting is to keep an eye on the existing risks to help any new ones arising.
4. what is meant by rapid prototyping? Explain how do you incorporate such a scheme in the software project management? (Nov/Dec 2007)

Rapid Prototyping (RP) can be defined as a group of techniques used to quickly fabricate a scale model of a part or assembly using three-dimensional computer aided design (CAD) data. Rapid Prototyping has also been referred to as solid free-form manufacturing, computer automated manufacturing, and layered manufacturing. RP has obvious use as a vehicle for visualization.

In addition, RP models can be used for testing, such as when an airfoil shape is put into a wind tunnel. RP models can be used to create male models for tooling, such as silicone rubber molds and investment casts. In some cases, the RP part can be the final part, but typically the RP material is not strong or accurate enough. When the RP material is suitable, highly convoluted shapes (including parts nested within parts) can be produced because of the nature of RP.

5. what kind of risk is perceived in the software development? How do you handle it effectively? Explain with an example(Nov/Dec 2007)

There are following activities involved in risk management process:

· Identification - Make note of all possible risks, which may occur in the project.
· Categorize - Categorize known risks into high, medium and low risk intensity as per their possible impact on the project.
· Manage - Analyse the probability of occurrence of risks at various phases. Make plan to avoid or face risks. Attempt to minimize their side-effects.
· Monitor - Closely monitor the potential risks and their early symptoms. Also monitor the effects of steps taken to mitigate or avoid them.

6. Do you feel spiral model is a good enough model to be followed in industry? Justify your answer with two reasons. (Nov/Dec 2007)
The spiral model is similar to the incremental model, with more emphasis placed on risk analysis. The spiral model has four phases: Planning, Risk Analysis, Engineering and Evaluation. A software project repeatedly passes through these phases in iterations (called Spirals in this model). The baseline spiral, starting in the planning phase, requirements are gathered and risk is assessed. Each subsequent spirals builds on the baseline spiral.

Diagram of Spiral model:

[image:]

Advantages of Spiral model:

· High amount of risk analysis hence, avoidance of Risk is enhanced.
· Good for large and mission-critical projects.
· Strong approval and documentation control.
· Additional Functionality can be added at a later date.
· Software is produced early in the software life cycle.
7. what are the major difference between system engineering and software engineering? State and explain the stages that distinguish the two. (April/May 2008)
Software is prominent in most modern systems architectures and is often the primary means for integrating complex system components. Software engineering and systems engineering are not merely related disciplines; they are intimately intertwined. (See Systems Engineering and Other Disciplines.) Good systems engineering is a key factor in enabling good software engineering.
SystemsEngineeringMethods
Adapted to Software Engineering Stakeholder Analysis

· Requirements Engineering
· Functional Decomposition
· Design Constraints
· Architectural Design
· Design Criteria
· Design Trade offs
· Interface Specification
· Traceability

· Configuration Management
· Systematic Verification And Validation

Software Engineering Methods Adapted to Systems Engineering

· Model-Driven Development
· UML-SysML
· Use Cases
· Object-Oriented Design
· Iterative Development
· Agile Methods
· Continuous Integration
· Process Modeling
· Process Improvement
· Incremental V&V

8. Explain with two example of software development project that would be amenable to evolutionary prototyping. Why is evolutionary prototyping suitable in these cases? (April/May 2008)
Evolutionary prototyping model is a software development lifecycle model in which software prototype created for demonstration and requirements elaboration. Evolutionary prototyping model includes the four main phases:
· Definition the basic requirements
· Creating the working prototype
· Verification of the working prototype
· Changing or elaboration the requirements Evolutionary prototyping model allows create working software prototypes fast and may be applicable to projects
· System requirements early are not known in advance
· Creating fundamentally new software
· Developers are not confident in software architecture and algorithms

9. what are the necessities of life cycle model? Elaborate on the various issues of software. (April/May 2008)

There are some challenges faced by the development team while implementing the software. Some of them are mentioned below:

· Code-reuse - Programming interfaces of present-day languages are very sophisticated and are equipped huge library functions. Still, to bring the cost down of end product, the organization management prefers to re-use the code, which was created earlier for some other software. There are huge

issues faced by programmers for compatibility checks and deciding how much code to re-use.
· Version Management - Every time a new software is issued to the customer, developers have to maintain version and configuration related documentation. This documentation needs to be highly accurate and available on time.
· Target-Host - The software program, which is being developed in the organization, needs to be designed for host machines at the customers end. But at times, it is impossible to design a software that works on the target machines.

10. which process model leads to s/w reuse .explain. (April/May 2008) TheEvolutionaryModel
This approach is based on the idea of rapidly developing an initial software implementation from very abstract specifications and modifying this according to your appraisal. Each program version inherits the best features from earlier versions. Each version is refined based upon feedback from yourself to produce a system which satisfies your needs. At this point the system may be delivered or it may be re-implemented using a more structured approach to enhance robustness and maintainability. Specification, development and validation activities are concurrent with strong feedback between each.
[image:]

11. Explain the process model which is useful when staffing is unavailable for complete implementation. (NOV/DEC 2009)
Incremental Model:

In incremental model the whole requirement is divided into various builds. Multiple development cycles take place here, making the life cycle a “multi-waterfall” cycle.

Cycles are divided up into smaller, more easily managed modules. Each module passes through the requirements, design, implementation and testing phases. A working version of software is produced during the first module, so you have working software early on during the software life cycle. Each subsequent release of the module adds function to the previous release. The process continues till the complete system is achieved.

Diagram of Incremental model:
[image:]

When to use the Incremental model:

· This model can be used when the requirements of the complete system are clearly defined and understood.
· Major requirements must be defined; however, some details can evolve with time.
· There is a need to get a product to the market early.
· A new technology is being used
· Resources with needed skill set are not available
· There are some high risk features and goals.

12. Explain the function of spiral model. (NOV/DEC 2009)

Spiral ModelSpiral model is a combination of both, iterative model and one of the SDLC model. It can be seen as if you choose one SDLC model and combine it with

[image:]cyclic	process	(iterative	model).

This model considers risk, which often goes un-noticed by most other models. The model starts with determining objectives and constraints of the software at the start of one iteration. Next phase is of prototyping the software. This includes risk analysis. Then one standard SDLC model is used to build the software. In the fourth phase of the plan of next iteration is prepared.

13. what is prototyping .Explain its types. (NOV/DEC 2009)

Software prototyping is the activity of creating prototypes of software applications, i.e., incomplete versions of the software program being developed. It is an activity that can occur in software development
Types of prototyping Throwaway prototyping
Also called close-ended prototyping. Throwaway or Rapid Prototyping refers to the
creation of a model that will eventually be discarded rather than becoming part of the final delivered software. After preliminary requirements gathering is accomplished, a

simple working model of the system is constructed to visually show the users what their requirements may look like when they are implemented into a finished system.
Evolutionary prototyping

Evolutionary Prototyping (also known as breadboard prototyping) is quite different from Throwaway Prototyping. The main goal when using Evolutionary Prototyping is to build a very robust prototype in a structured manner and constantly refine it. The reason for this is that the Evolutionary prototype, when built, forms the heart of the new system, and the improvements and further requirements will be built.

Incremental prototyping
The final product is built as separate prototypes. At the end the separate prototypes are merged in an overall design. By the help of incremental prototyping we can reduce the time gap between user and software developer.
Extreme prototyping
Extreme Prototyping as a development process is used especially for developing web applications. Basically, it breaks down web development into three phases, each one based on the preceding one.
14. which process model having realistic approach and used in large scale system.(Apr/May 2010)

Spiral Model

Spiral model is a combination of both, iterative model and one of the SDLC model. It can be seen as if you choose one SDLC model and combine it with cyclic process (iterative model).

[image:]

This model considers risk, which often goes un-noticed by most other models. The model starts with determining objectives and constraints of the software at the start of one iteration. Next phase is of prototyping the software. This includes risk analysis. Then one standard SDLC model is used to build the software. In the fourth phase of the plan of next iteration is prepared.

15. why the first system is throw away system?explain the concept with advantages and disadvantages.(Apr/May 2010)
Throwaway or Rapid Prototyping refers to the creation of a model that will eventually be discarded rather than becoming part of the final delivered software. After preliminary requirements gathering is accomplished, a simple working model of the system is constructed to visually show the users what their requirements may look like when they are implemented into a finished system.
various Rapid prototyping techniques

i. Dynamic high level language development.
ii. Database programming.
iii. Component and application assembly.

There are many advantages to using prototyping in software development – some tangible, some abstract.

Reduced time and costs: Prototyping can improve the quality of requirements and specifications provided to developers. Because changes cost exponentially more to implement as they are detected later in development, the early determination of what the user really wants can result in faster and less expensive software.

Improved and increased user involvement: Prototyping requires user involvement and allows them to see and interact with a prototype allowing them to provide better and more complete feedback and specifications

Disadvantages:

Insufficient analysis: The focus on a limited prototype can distract developers from properly analyzing the complete project. This can lead to overlooking better solutions, preparation of incomplete specifications or the conversion of limited prototypes into poorly engineered final projects that are hard to maintain.
User confusion of prototype and finished system: Users can begin to think that a prototype, intended to be thrown away, is actually a final system that merely needs to be finished or polished.
Developer misunderstanding of user objectives: Developers may assume that users share their objectives (e.g. to deliver core functionality on time and within budget), without understanding wider commercial issues.
Excessive development time of the prototype: A key property to prototyping is the fact that it is supposed to be done quickly. If the developers lose sight of this fact, they very well may try to develop a prototype that is too complex.

16.a.what is CMMI.Explain.(Apr/May 2010)

Capability Maturity Model Integration is used in assessing how well an organization’s	processes allow to complete and manage new software projects.

[image:]

Under the CMMI methodology, processes are rated according to their maturity levels, which are defined as: Initial, Managed, Defined, Quantitatively Managed, Optimizing.
17. Explain the process model that combines the elements of water fall model & iterative fashion.(Apr/May 2010)
Incremental Model:

In incremental model the whole requirement is divided into various builds. Multiple development cycles take place here, making the life cycle a “multi-waterfall” cycle. Cycles are divided up into smaller, more easily managed modules. Each module passes through the requirements, design, implementation and testing phases. A working version of software is produced during the first module, so you have working software early on during the software life cycle. Each subsequent release of the module adds function to the previous release. The process continues till the complete system is achieved.

Diagram of Incremental model:

[image:]

Advantages of Incremental model:

· Generates working software quickly and early during the software life cycle.
· This model is more flexible – less costly to change scope and requirements.
· It is easier to test and debug during a smaller iteration.
· In this model customer can respond to each built.
· Lowers initial delivery cost.
· Easier to manage risk because risky pieces are identified and handled during it’d iteration.

Disadvantages of Incremental model:

· Needs good planning and design.
· Needs a clear and complete definition of the whole system before it can be broken down and built incrementally.
· Total cost is higher than waterfall.

When to use the Incremental model:

· This model can be used when the requirements of the complete system are clearly defined and understood.
· Major requirements must be defined; however, some details can evolve with time.
· There is a need to get a product to the market early.
· A new technology is being used
· Resources with needed skill set are not available
· There are some high risk features and goals.

18. Explain the various phases of software development life cycle (SDLC) and identify deliverables at each phase.(May/Jun 2011)
A typical Software Development life cycle consists of the following stages:

· Stage 1: Planning and Requirement Analysis

· Stage 2: Defining Requirements

· Stage 3: Designing the product architecture

· Stage 4: Building or Developing the Product

· Stage 5: Testing the Product

· Stage 6: Deployment in the Market and Maintenance

· Requirement Gathering and analysis: All possible requirements of the system to be developed are captured in this phase and documented in a requirement specification doc.
· System Design: The requirement specifications from first phase are studied in this phase and system design is prepared. System Design helps in specifying hardware and system requirements and also helps in defining overall system architecture.
· Implementation: With inputs from system design, the system is first developed in small programs called units, which are integrated in the next phase. Each unit is developed and tested for its functionality which is referred to as Unit Testing.
· Integration and Testing: All the units developed in the implementation phase are integrated into a system after testing of each unit. Post integration the entire system is tested for any faults and failures.
· Deployment of system: Once the functional and non functional testing is done, the product is deployed in the customer environment or released into the market.
· Maintenance: There are some issues which come up in the client environment. To fix those issues patches are released. Also to enhance the product some better versions are released. Maintenance is done to deliver these changes in the customer environment.
OR

19. explain any four software process models. (May/Jun 2011)

SDLC Models
There are various software development life cycle models defined and designed which are followed during software development process. These models are also referred as "Software Development Process Models". Each process model follows a Series of steps unique to its type, in order to ensure success in process of software development.

Following are the most important and popular SDLC models followed in the industry:

· Waterfall Model

· Iterative Model

· Spiral Model

· V-Model

· Big Bang Model

The other related methodologies are Agile Model, RAD Model, Rapid Application Development and Prototyping Models.

SDLC Waterfall Model
Following is a diagrammatic representation of different phases of waterfall model.
[image:]

[image:]SDLC Iterative Model

SDLC Spiral Model
The spiral model has four phases. A software project repeatedly passes through these phases in iterations called Spirals.

· Identification:This phase starts with gathering the business requirements in the baseline spiral. In the subsequent spirals as the product matures, identification of system requirements, subsystem requirements and unit requirements are all done in this phase.

This also includes understanding the system requirements by continuous communication between the customer and the system analyst. At the end of the spiral the product is deployed in the identified market.

· Design:Design phase starts with the conceptual design in the baseline spiral and involves architectural design, logical design of modules, physical product design and final design in the subsequent spirals.
· Construct or Build:Construct phase refers to production of the actual software product at every spiral. In the baseline spiral when the product is just thought of and the design is being developed a POC (Proof of Concept) is developed in this phase to get customer feedback.
Then in the subsequent spirals with higher clarity on requirements and design details a working model of the software called build is produced with a version number. These builds are sent to customer for feedback.

· Evaluation and Risk Analysis:Risk Analysis includes identifying, estimating, and monitoring technical feasibility and management risks, such as schedule slippage and cost overrun. After testing the build, at the end of first iteration, the customer evaluates the software and provides feedback.

20. what is prototype model?illustrate with example .state its merits and demerits.(Nov/Dec 2012)

Need of Prototyping Model
This type of System Development Method is employed when it is very difficult to obtain	exact	requirements	from		the	customer(unlike	waterfall	model,	where requirements are clear). While making the model, user keeps giving feedbacks from time to time and based on it, a prototype is made. Completely built sample model is shown to user and based on his feedback, the SRS(System Requirements Specifications) document is prepared. After completion of this, a more accurate SRS is prepared, and now development work can start using Waterfall Model. Now lets discuss the disadvantages and advantages of the Prototype model in Software			Development			Method.
[image:]
Prototyping Process Model

Advantages of Prototyping Model

1) When prototype is shown to the user, he gets a proper clarity and 'feel' of the functionality of the software and he can suggest changes and modifications.

2) This type of approach of developing the software is used for non-IT-literate people. They usually are not good at specifying their requirements, nor can tell properly about what they expect from the software.
3) When client is not confident about the developer's capabilities, he asks for a small prototype to be built. Based on this model, he judges capabilities of developer.
4) Sometimes it helps to demonstrate the concept to prospective investors to get funding	for	project.
5) It reduces risk of failure, as potential risks can be identified early and mitigation steps	can	be	taken.
6) Iteration between development team and client provides a very good and conductive	environment	during	project.
7) Time required to complete the project after getting final the SRS reduces, since the developer has a better idea about how he should approach the project.

Disadvantages of Prototyping Model:

1) Prototyping is usually done at the cost of the developer. So it should be done using minimal resources. It can be done using Rapid Application Development (RAD) tools. Please note sometimes the start-up cost of building the development team,	focused	on	makingprototype,ishigh.
2) Once we get proper requirements from client after showing prototype model, it may be of no use. That is why, sometimes we refer to the prototype as "Throw-away" prototype.
3) Itisaslowprocess.
4) Too much involvement of client, is not always preferred by the developer.
5) Too	many	changes	can	disturb	the	rhythm	of	the	development	team.

21. compare and contrast verification and validation. (Nov/Dec 2012)

· Verification represents the set of activities that are carried out to confirm that the software correctly implements the specific functionality.
· Validation represents the set of activities that ensure that the software that has been built is satisfying the customer requirements.
22. compare the following lifecycle model.(Nov/Dec 2013)

1. Waterfall model.

2. Iteration model.

3. V-shaped model.

4. Spiral model.

5. Extreme model.

These models are chosen because their features correspond to most software development programs.
STRENGTH:(WATERFALL MODEL)

· Minimizes planning overhead since it can be done up front.
· Structure minimizes wasted effort, so it works well for technically weak or inexperienced staff.
WEAKNESS:

· Inflexible
· Only the final phase produces a non documentation deliverable.
· Backing up to address mistakes is difficult.

SPIRAL MODEL:
Advantages

· High amount of risk analysis.
· Good for large and mission-critical projects.
· Software is produced early in the software life cycle.

 Disadvantages

· Can be a costly model to use.
· Risk analysis requires highly specific expertise.
· Project’s success is highly dependent on the risk analysis phase.
· Doesn’t work wellfor smaller projects

V-SHAPE MODEL
Advantages:
· Simple and easy to use.
· Each phase has specific deliverables.
· Higher chance of success over the waterfall model
· due to the early development of test plans during the
· life cycle.
· Works well for small projects where requirements are
· easily understood.

Disadvantages
· Very rigid like the waterfall model.
· Little flexibility and adjusting scope is difficult and

· expensive.
· Software is developed during the implementation phase,
· so no early prototypes of the software are produced.
· This Model does not provide a clear path for problems
· found during testing phases

	Rapid application development (RAD)

	Pros
	Promotes strong collaborative atmosphere and dynamic gathering of requirements. Business owner actively participates in prototyping, writing test cases and performing unit testing.

	
Cons
	Dependence on strong cohesive teams and individual commitment to the project. Decision making relies on the feature functionality team and a communal decision-making process with lesser degree of centralized PM and engineering authority.

RAD Model Application
RAD model can be applied successfully to the projects in which clear modularization is possible. If the project cannot be broken into modules, RAD may fail. Following are the typical scenarios where RAD can be used:

· RAD should be used only when a system can be modularized to be delivered in incremental manner.

· It should be used if there.s high availability of designers for modeling.

· It should be used only if the budget permits use of automated code generating tools.

· RAD SDLC model should be chosen only if domain experts are available with relevant business knowledge.

· Should be used where the requirements change during the course of the project and working prototypes are to be presented to customer in small iterations of 2-3 months.

23. functional and non- functional requirement.(Nov/Dec 2013)

· Basically, functional requirements describe the features, functioning, and usage of a product/system/software from the perspective of the product and its user.
· Although referred to as "requirements," they really are a form of design, albeit high-level.
· Functional requirements also often are called "functional specifications," and "specification" is a synonym for design.

· Non-functional requirements are not non-functional at all.
· Rather, they describe various quality factors, or attributes, which affect the functionality's effectiveness.
· They do not exist in the abstract but only with respect to relevant functionality.
· They are often called "ilities," because many end in "ility," such as, usability, reliability, and maintainability.

24. IDENTIFY STAKEHOLDER .(Nov/Dec 2013)
· A stakeholder is a person or organization who influences a system’s requirements
or who is impacted by that system.

	Type	of
Stakeholder Requirement
	Description

	Service	or Functional
	Sets of actions to perform the mission or operation of the system-of-interest; enhanced by effectiveness or performance characteristics attached to the mission or operations.

	Operational
	This category may include:

· Operational concepts that indicate the operational features to be provided without specifying design solutions.
· Operational scenarios describing the sequence or series of activities supported by the system-of-interest.
· Operational modes and transitions of modes between states/modes of the system-of-interest during its utilization to include dynamic interactions between the system-of- interest (viewed as a black box) and the system-of- interest's interface with external components in the context
of its use.

	Interface
	Matter, energy, or information flows exchanged between the system-of-interest and its external components in the context of its use, including physical interfaces.

	Environmental
	External conditions that affect the system when in operation.

	Utilization Characteristics
	The '-ilities' used to indicate conditions of the utilization of the system-of-interest (e.g. usability, dependability, security, etc.).

	Human Factors
	Capabilities	of	users	and	operators,	ergonomics,	and
associated constraints.

	Logistical
	Acquisition, transportation, and storage of elements needed by the system-of-interest to perform its services (e.g. constraints for logistical support).

	Design	and Realization Constraints
	Reuse of existing system elements or forbidden materials, for example.

	Process Constraints
	These are stakeholder (usually acquirer or user) requirements imposed through the contract or statement of work. These requirements do not directly address the end-item system, but rather how the end-item system will be developed and provided. Process requirements include compliance with national, state, or local laws, such as environmental laws, administrative requirements, acquirer/supplier relationship requirements, and specific work directives. Process requirements may also be imposed on a program by corporate policy or practice. System or system element implementation process requirements, such as mandating a particular design method, are usually captured in project agreement documentation such as contracts, statements of
work (SOW), and quality plans.

	Project Constraints
	Constraints to performing the project and/or the end-item system within cost and schedule.

	Business	Model Constraints
	Constraints related to the expected business goal achieved by the system-of-interest, when this is relevant within the context of use, which may include: geographic position (local, national, international) of the future product, service, or organization resulting from the system-of-interest, distribution channels, alliance and partnership, finance and revenue model, etc.

25. discuss in details about any two evolutionary process models.(May/Jun 2014)

Spiral Model

Spiral model is a combination of both, iterative model and one of the SDLC model. It can be seen as if you choose one SDLC model and combine it with cyclic process (iterative model).

[image:]

This model considers risk, which often goes un-noticed by most other models. The model starts with determining objectives and constraints of the software at the start of one iteration. Next phase is of prototyping the software. This includes risk analysis. Then one standard SDLC model is used to build the software. In the fourth phase of the plan of next iteration is prepared.

V – model

The major drawback of waterfall model is we move to the next stage only when the previous one is finished and there was no chance to go back if something is found wrong in later stages. V-Model provides means of testing of software at each stage in reverse manner.

[image:]

At every stage, test plans and test cases are created to verify and validate the product according to the requirement of that stage. For example, in requirement gathering stage the test team prepares all the test cases in correspondence to the requirements. Later, when the product is developed and is ready for testing, test cases of this stage verify the software against its validity towards requirements at this stage.

This makes both verification and validation go in parallel. This model is also known as verification and validation model.

26. Discuss about the classic waterfall process model.(May/Jun 2014) Waterfall Model
Waterfall model is the simplest model of software development paradigm. It says the all the phases of SDLC will function one after another in linear manner. That is, when the first phase is finished then only the second phase will start and so on.

[image:]

This model assumes that everything is carried out and taken place perfectly as planned in the previous stage and there is no need to think about the past issues that may arise in the next phase. This model does not work smoothly if there are some issues left at the previous step. The sequential nature of model does not allow us go back and undo or redo our actions.

This model is best suited when developers already have designed and developed similar software in the past and are aware of all its domains.

[bookmark: unit_2.pdf]UNIT – II

1. How do the design aspects vary for reuse of the software developed (May/June 2006)

Software Reuse
A definition of software reuse is the process of creating software systems from predefined software components.
The advantage of software reuse:

The systematic development of reusable components.
The systematic reuse of these components as building blocks to create new systems.

A reusable component may be code, but the bigger benefits of reuse come from a broader and higher-level view of what can be reused. Software specifications, designs, tests cases, data, prototypes, plans, documentation, frameworks, and templates are all candidates for reuse.

Software reuse can cut software development time and costs. The major advantages for software reuse are to:

· Increase software productivity.
· Shorten software development time.
· Improve software system interoperability.
· Develop software with fewer people.
· Move personnel more easily from project to project.
· Reduce software development and maintenance costs.
· Produce more standardized software.
· Produce better quality software and provide a powerful competitive advantage.

2. summarize the steps involved in data design process(May/June 2006)

· Data design – created by transforming the analysis information model (data dictionary and ERD) into data structures required to implement the software. Part of the data design may occur in conjunction with the design of software architecture. More detailed data design occurs as each software component is designed.
Data Dictionaries:
· It is a main method for analyzing the data flows and data stores of data- oriented computer systems.
· The data dictionary is a reference work of data about data (metadata)
· It collects, coordinates, and confirms what a specific data term means to different people in the organization.
· Data dictionaries are created by making a detailed analysis of the data flows, data stores, and processes in data flow diagrams.

· The data dictionary may be used for the following reasons:
· Provide documentation
· Eliminate redundancy
· Validate the data flow diagram for completeness and accuracy
· Provide a starting point for developing screens and reports
· [image:]Determine the contents of data that is stored

· Data dictionaries contain:
· Data flow
Each data flow should be defined with descriptive information and it's compound with structure or elements.
· Data structures
They are a group of smaller structures and elements. Specific arrangements

of data attributed (elements) that define the organization of a single instance of a data flow.
· Data Elements
The descriptive property or characteristic of an entity. In database terms, this is a "attribute" or a "field."
· Data stores
A inventory of data. The whole of the data in a small system. A database!

Entity Relationship Diagrams for Data Modelling:
· Data models can be of two types:
· Logical data models – describe logical organisation and presentation of data. A technique for logical data modelling is the entity-relationship diagrams.
· Physical data models – produced in the design phase, give implementation details about how data will actually be stored in databases and files.
· An Entity-Relationship Diagram (ERD) shows how the data that flows in the system is organised and used.

· The elements of an ERD are the following:
· Entity – multiple instances about which the data is collected.
· Attributes – specific details or information about an entity.
· Relationships – associations between entities. A relationship has:
· Cardinality -The number of instances of entity B that can be associated with each instance of entity A.
· Minimum Cardinality or Modality - The minimum number of instances of entity B that may be associated with each instance of entity A.
· Maximum Cardinality - The maximum number of instances of entity B that may be associated with each instance of entity A
3. Give five examples for computer based real time system(May/June 2006) DEFINITION:
A real-time system is one that must process information and produce a response within a specified time, else risk severe consequences, including failure. That is, in a system with a real-time constraint it is no good to have the correct action or the correct answer after a certain deadline
· Hard real-time systems

· An overrun in response time leads to potential loss of lifeand/or big financial damage

· Many of these systems are considered to be safetycritical.

· Sometimes they are “only” mission critical, with themission being very expensive.

· In general there is a cost function associated with thesystem

· Soft real-time systems

Deadline overruns are tolerable, but not desired.• There are no catastrophic consequences of missing oneor more deadlines.
· There is a cost associated to overrunning, but this costmay be abstract.

· Often connected to Quality-of-Service (QoS)

· Firm teal-time systems

· The computation is obsolete if the job is not finished ontime.

· Cost may be interpreted as loss of revenue.

· Typical example are forecast systems.

· Weakly hard real-time

Systems where m out of k deadlines have to be met.
· In most cases feedback control systems, in whichthe control becomes unstable with too manymissed control cycles.
· Best suited if system has to deal with otherfailures as well (e.g. Electro MagneticInterference EMI).
· Likely probabilistic guarantees sufficient.

4. Why is traceability an important aspect of requirement management? Why context system model are useful for requirement validation ? (April/May 2008)

Requirements traceability is concerned with documenting the life of a requirement. It should be possible to trace back to the origin of each requirement and every change made to the requirement should therefore be documented in order to achieve traceability. Even the use of the requirement after the implemented features have been deployed and used should be traceable.

Requirements come from different sources, like the business person ordering the product, the marketing manager and the actual user. These people all have different requirements for the product. Using requirements traceability, an implemented feature can be traced back to the person or group that wanted it during the requirements elicitation. This can, for example, be used during the development process to prioritize the requirement, determining how valuable the requirement is to a specific user. It can also be used after the deployment when user studies show that a feature is not used, to see why it was required in the first place.

5. what	is	requirement	engineering?	State	its	process	and	explain requirement elicitation problem. (April/May 2008)

Requirement Engineering

It is a four step process, which includes –

· Feasibility Study
· Requirement Gathering
· Software Requirement Specification
· Software Requirement Validation Let us see the process briefly - Feasibility study
· When the client approaches the organization for getting the desired product developed, it comes up with rough idea about what all functions the software must perform and which all features are expected from the software.
· Referencing to this information, the analysts does a detailed study about whether the desired system and its functionality are feasible to develop.
· This feasibility study is focused towards goal of the organization. This study analyzes whether the software product can be practically materialized in terms of implementation, contribution of project to organization, cost constraints and as per values and objectives of the organization. It explores technical aspects of the project and product such as usability, maintainability, productivity and integration ability.

The output of this phase should be a feasibility study report that should contain adequate comments and recommendations for management about whether or not the project should be undertaken.

Requirement Gathering

If the feasibility report is positive towards undertaking the project, next phase starts with gathering requirements from the user. Analysts and engineers communicate with the client and end-users to know their ideas on what the software should provide and which features they want the software to include.

Software Requirement Specification

SRS is a document created by system analyst after the requirements are collected from various stakeholders.

SRS defines how the intended software will interact with hardware, external interfaces, speed of operation, response time of system, portability of software across various platforms, maintainability, speed of recovery after crashing, Security, Quality, Limitations etc.

The requirements received from client are written in natural language. It is the responsibility of system analyst to document the requirements in technical language so that they can be comprehended and useful by the software development team.

SRS should come up with following features:

· User Requirements are expressed in natural language.
· Technical requirements are expressed in structured language, which is used inside the organization.
· Design description should be written in Pseudo code.
· Format of Forms and GUI screen prints.
· Conditional and mathematical notations for DFDs etc.

Software Requirement Validation

After requirement specifications are developed, the requirements mentioned in this document are validated. User might ask for illegal, impractical solution or experts may interpret the requirements incorrectly. This results in huge increase in cost if not nipped in the bud. Requirements can be checked against following conditions -

· If they can be practically implemented
· If they are valid and as per functionality and domain of software
· If there are any ambiguities
· If they are complete
· If they can be demonstrated

6. explain behavioural modelling? (April/May 2008)

Behavioural models are used to describe the overall behaviour of a system.
· The state transition diagrams are used to represent the behaviour of the system.
· The state transition diagram is basically a collection of states and events. The events cause the
system to change its state.

· The state transition diagram also represents what actions are to be taken on occurrence of
particular event.
State chart diagram
To understand the design of state chart diagram consider following example - Consider an elevator for n floors has n buttons one for each floor. The working of such elevator
can be given as.
· There is a set of buttons called ‘elevator buttons’. If we want to visit a particular floor then the
· elevator button for corresponding floor is pressed. It causes an illumination and elevator starts
· moving to visit the desired floor. The illumination is cancelled on reaching to destination.
· There is another set of buttons called ‘floor button’. When a person on particular floor want to
· visit another floor then the floor button has to be pressed. This makes an illumination at floor
· button and the elevator starts moving towards the floor where on the person is. And illumination
· is cancelled when the elevator reaches on the desired floor.
[image:]

7. explain the function of spiral model.(Nov/Dec 2009) Spiral Model

Spiral model is a combination of both, iterative model and one of the SDLC model. It can be seen as if you choose one SDLC model and combine it with cyclic process (iterative model).
[image:]

This model considers risk, which often goes un-noticed by most other models. The model starts with determining objectives and constraints of the software at the start of one iteration. Next phase is of prototyping the software. This includes risk analysis. Then one standard SDLC model is used to build the software. In the fourth phase of the plan of next iteration is prepared.

8. what is prototyping .explain its types.(Nov/Dec 2009)

Software prototyping is the activity of creating prototypes of software applications, i.e., incomplete versions of the software program being developed. It is an activity that can occur in software development
Types of prototyping Throwaway prototyping
· Also called close-ended prototyping.Throwaway or Rapid Prototyping refers to
the creation of a model that will eventually be discarded rather than becoming part of the final delivered software. After preliminary requirements gathering is accomplished, a simple working model of the system is constructed to visually show the users what their requirements may look like when they are implemented into a finished system.

Evolutionary prototyping

· Evolutionary Prototyping (also known as breadboard prototyping) is quite different from Throwaway Prototyping. The main goal when using Evolutionary Prototyping is to build a very robust prototype in a structured manner and constantly refine it. The reason for this is that the Evolutionary prototype, when built, forms the heart of the new system, and the improvements and further requirements will be built.

Incremental prototyping
· The final product is built as separate prototypes. At the end the separate prototypes are merged in an overall design. By the help of incremental prototyping we can reduce the time gap between user and software developer.
Extreme prototyping
· Extreme Prototyping as a development process is used especially for developing web applications. Basically, it breaks down web development into three phases, each one based on the preceding one.

9. what is CMMI.Explain.(APR/MAY 2010)

Capability Maturity Model Integration is used in assessing how well an organization’s	processes allow to complete and manage new software projects.

[image:]

Under the CMMI methodology, processes are rated according to their maturity levels, which are defined as: Initial, Managed, Defined, Quantitatively Managed, Optimizing.
10. Explain the process model that combines the elements of water fall model & iterative fashion.(APR/MAY 2010)
Incremental Model:

· In incremental model the whole requirement is divided into various builds. Multiple development cycles take place here, making the life cycle a “multi- waterfall” cycle. Cycles are divided up into smaller, more easily managed modules. Each module passes through the requirements, design, implementation and testing phases. A working version of software is produced during the first module, so you have working software early on during the software life cycle. Each subsequent release of the module adds function to the previous release. The process continues till the complete system is achieved.

Diagram of Incremental model:

[image:]

Advantages of Incremental model:

· Generates working software quickly and early during the software life cycle.
· This model is more flexible – less costly to change scope and requirements.
· It is easier to test and debug during a smaller iteration.
· In this model customer can respond to each built.
· Lowers initial delivery cost.
· Easier to manage risk because risky pieces are identified and handled during it’d iteration.

Disadvantages of Incremental model:

· Needs good planning and design.
· Needs a clear and complete definition of the whole system before it can be broken down and built incrementally.
· Total cost is higher than waterfall.

When to use the Incremental model:

· This model can be used when the requirements of the complete system are clearly defined and understood.
· Major requirements must be defined; however, some details can evolve with time.
· There is a need to get a product to the market early.
· A new technology is being used
· Resources with needed skill set are not available
· There are some high risk features and goals.

11. explain any four software process models(May/Jun 2011)

· SDLC Models
· There are various software development life cycle models defined and designed which are followed during software development process. These models are also referred as "Software Development Process Models". Each process model follows a Series of steps unique to its type, in order to ensure success in process of software development.

Following are the most important and popular SDLC models followed in the industry:

· Waterfall Model

· Iterative Model

· Spiral Model

· V-Model

· Big Bang Model

The other related methodologies are Agile Model, RAD Model, Rapid Application Development and Prototyping Models.

SDLC Waterfall Model
Following is a diagrammatic representation of different phases of waterfall model.
[image:]

SDLC Iterative Model

[image:]

SDLC Spiral Model
The spiral model has four phases. A software project repeatedly passes through these phases in iterations called Spirals.

· Identification:This phase starts with gathering the business requirements in the baseline spiral. In the subsequent spirals as the product matures, identification of system requirements, subsystem requirements and unit requirements are all done in this phase.
This also includes understanding the system requirements by continuous communication between the customer and the system analyst. At the end of the spiral the product is deployed in the identified market.

· Design:Design phase starts with the conceptual design in the baseline spiral and involves architectural design, logical design of modules, physical product design and final design in the subsequent spirals.
· Construct or Build:Construct phase refers to production of the actual software product at every spiral. In the baseline spiral when the product is just thought of and the design is being developed a POC (Proof of Concept) is developed in this phase to get customer feedback.

Then in the subsequent spirals with higher clarity on requirements and design details a working model of the software called build is produced with a version number. These builds are sent to customer for feedback.

· Evaluation and Risk Analysis:Risk Analysis includes identifying, estimating, and monitoring technical feasibility and management risks, such as schedule slippage and cost overrun. After testing the build, at the end of first iteration, the customer evaluates the software and provides feedback.

12. consider the following specification from SRS document”if an electronic(Nov/Dec 2012)
Message is sent to party A and party A is Not On-line The message shall to stored in mail box” The software engineer develops the system using the following design specification:
· message arrives for A
· if A is online,write the message on A’s screen
· if A is not on –line ,write the message in the mailbox not currently On-line The system is delivered and causes chaos. why? explain your answer

13. An independent truck company wants to track and record its drivers driving habits. For this purpose the company has rented 800 phone numbers and has printed the numbers on the front, back and side of all trucks owned by the company.Next to the 800 numbers a message is written”PLESE REPORT ANY DRIVER OF TRUCK PROBLEM BY CALLING THIS NUMBER”(Nov/Dec 2012)
THE HACKING COMPANY WAITS FOR YOU TO DEVELOP A SYSTEM THAT

· Collects information from caller about the driver performance and behaviour as well as truck condition,
· Generates	daily	and	monthly	reports	for	each	driver	and	truck management,
· Reports problem that require immediate action to an ON-Duty manager
Analyze the problem statement and list major function to be in corporated with SRS document
14. functional and non- functional requirement(Nov/Dec 2013)

· Basically, functional requirements describe the features, functioning, and usage of a product/system/software from the perspective of the product and its user.

· Although referred to as "requirements," they really are a form of design, albeit high-level.
· Functional requirements also often are called "functional specifications," and "specification" is a synonym for design.

· Non-functional requirements are not non-functional at all.
· Rather, they describe various quality factors, or attributes, which affect the functionality's effectiveness.
· They do not exist in the abstract but only with respect to relevant functionality.
· They are often called "ilities," because many end in "ility," such as, usability, reliability, and maintainability.

15. IDENTIFY STAKEHOLDER(Nov/Dec 2013)
· A stakeholder is a person or organization who influences a system’s requirements
or who is impacted by that system.

	Type of Stakeholder Requirement
	Description

	Service or Functional
	Sets of actions to perform the mission or operation of the system-of-interest; enhanced by effectiveness or performance characteristics attached to the mission or operations.

	Operational
	This category may include:

· Operational concepts that indicate the operational features to be provided without specifying design solutions.
· Operational scenarios describing the sequence or series of activities supported by the system-of-interest.
· Operational modes and transitions of modes between states/modes of the system-of-interest during its utilization to include dynamic interactions between the system-of- interest (viewed as a black box) and the system-of- interest's interface with external components in the context
of its use.

	Interface
	Matter, energy, or information flows exchanged between the system-of-interest and its external components in the context of its use, including physical interfaces.

	Environmental
	External conditions that affect the system when in operation.

	Utilization Characteristics
	The '-ilities' used to indicate conditions of the utilization of the system-of-interest (e.g. usability, dependability, security, etc.).

	Human Factors
	Capabilities of users and operators, ergonomics, and associated constraints.

	Logistical
	Acquisition, transportation, and storage of elements needed by the system-of-interest to perform its services (e.g.
constraints for logistical support).

	Design and Realization Constraints
	Reuse of existing system elements or forbidden materials, for example.

	Process Constraints
	These are stakeholder (usually acquirer or user) requirements imposed through the contract or statement of work. These requirements do not directly address the end-item system, but rather how the end-item system will be developed and provided. Process requirements include compliance with national, state, or local laws, such as environmental laws, administrative requirements, acquirer/supplier relationship requirements, and specific work directives. Process requirements may also be imposed on a program by corporate policy or practice. System or system element implementation process requirements, such as mandating a particular design method, are usually captured in project
agreement documentation such as contracts, statements of work (SOW), and quality plans.

	Project
Constraints
	Constraints to performing the project and/or the end-item
system within cost and schedule.

	Business Model Constraints
	Constraints related to the expected business goal achieved by the system-of-interest, when this is relevant within the context of use, which may include: geographic position (local, national, international) of the future product, service, or organization resulting from the system-of-interest, distribution channels, alliance and partnership, finance and revenue model, etc.

16. what are the types of behavioural models? (May/Jun 2014)

Behavioural models are used to describe the overall behaviour of a system.
· The state transition diagrams are used to represent the behaviour of the system.
· The state transition diagram is basically a collection of states and events. The events cause thesystem to change its state.
· The state transition diagram also represents what actions are to be taken on occurrence of particular event.

[bookmark: unit_3.pdf]UNIT – III

1. what are the characteristics of good design,describe different types of coupling and cohesion (Nov/Dec 2005)

Cohesion

Cohesion is a measure that defines the degree of intra-dependability within elements of a module. The greater the cohesion, the better is the program design.

There are seven types of cohesion,

· Co-incidental cohesion - It is unplanned and random cohesion, which might be the result of breaking the program into smaller modules for the sake of modularization. Because it is unplanned, it may serve confusion to the programmers and is generally not-accepted.
· Logical cohesion - When logically categorized elements are put together into a module, it is called logical cohesion.
· emporal Cohesion - When elements of module are organized such that they are processed at a similar point in time, it is called temporal cohesion.
· Procedural cohesion - When elements of module are grouped together, which are executed sequentially in order to perform a task, it is called procedural cohesion.
· Communicational cohesion - When elements of module are grouped together, which are executed sequentially and work on same data (information), it is called communicational cohesion.
· Sequential cohesion - When elements of module are grouped because the output of one element serves as input to another and so on, it is called sequential cohesion.
· Functional cohesion - It is considered to be the highest degree of cohesion, and it is highly expected. Elements of module in functional cohesion are grouped because they all contribute to a single well-defined function. It can also be reused.

Coupling

Coupling is a measure that defines the level of inter-dependability among modules of a program. It tells at what level the modules interfere and interact with each other. The lower the coupling, the better the program.

There are five levels of coupling

· Content coupling - When a module can directly access or modify or refer to the content of another module, it is called content level coupling.
· Common coupling- When multiple modules have read and write access to some global data, it is called common or global coupling.

· Control coupling- Two modules are called control-coupled if one of them decides the function of the other module or changes its flow of execution.
· Stamp coupling- When multiple modules share common data structure and work on different part of it, it is called stamp coupling.
· Data coupling- Data coupling is when two modules interact with each other by means of passing data (as parameter). If a module passes data structure as parameter, then the receiving module should use all its components.

2. discuss the role of SQA group.how do you prepare a SQA plan for a project (May/June 2006)
· Prepares an SQA plan for a project.
· The plan identifies

· evaluations to be performed

· audits and reviews to be performed

· standards that are applicable to the project

· procedures for error reporting and tracking

· documents to be produced by the SQA group

· amount of feedback provided to the software project team

· Participates in the development of the project’s software process description.
· The SQA group reviews the process description for compliance with organizational policy,
· Reviews software engineering activities to verify compliance with the defined software process.
· identifies, documents, and tracks deviations from the process and verifies that corrections have been made.
· Audits designated software work products to verify compliance with those defined as part of the software process.
· reviews selected work products; identifies, documents, and tracks deviations; verifies that corrections have been made
· periodically reports the results of its work to the project manager.

· Ensures that deviations in software work and work products are documented and handled according to a documented procedure.
· Records any noncompliance and reports to senior management.

–	Noncompliance items are tracked until they are resolved.

3. how reliability can be ensured for a project(May/June 2006)

· Software reliability is an important facet of software quality. It is defined as "the probability of failure-free operation of a computer program in a specified environment for a specified time".
· One of reliability's distinguishing characteristics is that it is objective, measurable, and can be estimated, whereas much of software quality is subjective criteria.
Software Metrics for Reliability:

reliability by identifying areas of the software requirements specification and code that can potentially cause errors. The SATC also examines the test plan for complete requirement coverage without excessive (and expensive) testing.

Design and Code Reliability Metrics

· It is generally accepted that more complex modules are more difficult to understand and have a higher probability of defects than less complex modules.[5] Thus complexity has a direct impact on overall quality and specifically on maintainability
· Testing Reliability Metrics
· Testing metrics must take two approaches to comprehensively evaluate the reliability. The first approach is the evaluation of the test plan, ensuring that the system contains the functionality specified in the requirements.
· This activity should reduce the number of errors due to lack of expected functionality.
· The second approach, one commonly associated with reliability, is the evaluation of the number of errors in the code and rate of finding/fixing them.

4. distinguish	direct	and	indirect	measures	for	software	development. (Nov/Dec 2007)

Direct and Indirect Measurement

Direct measure – relates an attribute to a number or symbol without reference to no other object or attribute (e.g., height).
Indirect measure

· Used when an attribute must be measured by combining several of its aspects (e.g., density)
· Requires a model of how measures are related to each other

· Direct and Indirect Measures for Software – examples

· Direct

· Length or source code (lines of code)

· Duration of testing process

· Number of defects discovered during test

· Time a developer spends on a project

· Indirect

· Programmer productivity (LOC/workmonths of effort)

· Module defect density (number of defects/module size)

· Defect detection efficiency (# defects detected/total defects)

· Requirements	stability	(initial	#	requirements/total	# requirements)
· Test effectiveness ratio (number of items covered/total number of items)
· System spoilage (effort spent fixing faults/total project effort)

· Find the matrix for employing 100% for software developement company specialized in finance.

5. compare	and	contract	SEMI-CMM	with	SIX-SIGMA	software	quality standards(Nov/Dec 2007)

The Capability Maturity Model (CMM) is a methodology used to develop and refine an organization's software development process.

Six Sigma is a management philosophy developed by Motorola that emphasizes setting extremely high objectives, collecting data, and analyzing results to a fine degree as a way to reduce defects in products and services.

6. describe the concept of cohesion and coupling. State the difference b/w cohesion and coupling with a suitable example. (April/May Apr/May 2008)

Cohesion

Cohesion is a measure that defines the degree of intra-dependability within elements of a module. The greater the cohesion, the better is the program design.

There are seven types of cohesion, namely ,

· Co-incidental cohesion - It is unplanned and random cohesion, which might be the result of breaking the program into smaller modules for the sake of modularization. Because it is unplanned, it may serve confusion to the programmers and is generally not-accepted.
· Logical cohesion - When logically categorized elements are put together into a module, it is called logical cohesion.
· emporal Cohesion - When elements of module are organized such that they are processed at a similar point in time, it is called temporal cohesion.
· Procedural cohesion - When elements of module are grouped together, which are executed sequentially in order to perform a task, it is called procedural cohesion.
· Communicational cohesion - When elements of module are grouped together, which are executed sequentially and work on same data (information), it is called communicational cohesion.
· Sequential cohesion - When elements of module are grouped because the output of one element serves as input to another and so on, it is called sequential cohesion.
· Functional cohesion - It is considered to be the highest degree of cohesion, and it is highly expected. Elements of module in functional cohesion are grouped because they all contribute to a single well-defined function. It can also be reused.

Coupling

Coupling is a measure that defines the level of inter-dependability among modules of a program. It tells at what level the modules interfere and interact with each other. The lower the coupling, the better the program.

There are five levels of coupling, namely -

· Content coupling - When a module can directly access or modify or refer to the content of another module, it is called content level coupling.
· Common coupling- When multiple modules have read and write access to some global data, it is called common or global coupling.
· Control coupling- Two modules are called control-coupled if one of them decides the function of the other module or changes its flow of execution.
· Stamp coupling- When multiple modules share common data structure and work on different part of it, it is called stamp coupling.
· Data coupling- Data coupling is when two modules interact with each other by means of passing data (as parameter). If a module passes data structure as parameter, then the receiving module should use all its components.

7. explain scm terminology. How is SCM organised? State its function. (Apr/May 2008).
· SCM Standards
· AECL CE-1001-STD REV.2
· This is named as standard for Software Engineering of Safety Critical Software. This standard applies
· to the software engineering of safety critical software used in real-time protective systems. This standard
· contains includes software requirements definition, software design, code implementation, requirements
· verification, design verification, code verification, hazards analysis, testing, reliability qualification,
· planning, configuration management and training processes.
o BS 7738-1
· This is a specification for information systems products using structured systems analysis and design
· method.
o IEEE 1042-1987
· In this standard, the application of Configuration Management (CM), management of software
· engineering projects is described. For users implementing SCM disciplines, suggestions and detailed
· examples of plans are provided. It is an IEEE standard for software configuration management plans
· which can be used for planning the different kinds of SCM activities.
o ISO/IEC TR 18018:APR/MAY 2010
· It provides guidance in the evaluation and selection for CM tools during data acquisition.
8. define real time executions and explain briefly why the call-return architectural control model is not usually suitable for real-time systems.(Apr/May 2008)
Call-return model

· Top-down subroutine model where control starts at the top of a subroutine hierarchy and moves downwards. Applicable to sequential systems.
[bookmark: Unit_1_.pdf] (
Main pro gram
Routine 3.2
Routine 3.1
Routine 1.2
Routine 1.1
Routine 3
Routine 2
Routine 1
)

9. how to select the appropriate prototyping approach? Explain.(APR/MAY 2010)

In prototyping model initially the requirement gathering is done.
· Developer and customer define overall objectives; identify areas needing more requirement
gathering.
· Then a quick design is prepared. This design represents what will be visible to user in input and
output format.
· From the quick design a prototype is prepared. Customer or user evaluates the prototype in
order to refine the requirements. Iteratively prototype is tuned for satisfying customer requirements. Thus prototype is important to identify the software requirements.
· When working prototype is built, developer use existing program fragments or program
generators to throw away the prototype and rebuild the system to high quality.
· Certain classes of mathematical algorithms, subset of command driven systems and other
applications where results can be easily examined without real time interaction can be developed
using prototyping paradigm. When to choose it ?
· Software applications that are relatively easy to prototype almost always involve Humanmachine
Interaction (HCI) the prototyping model is suggested.

· A general objective of software is defined but not detailed input, processing or output
requirements. Then in such a case prototyping model is useful.
· When the developer is unsure of the efficiency of an algorithm or the adaptability of an
operating system then prototype serves as a better choice. Using formal specification and prototyping environments.

10. explain the process of requirement engineering in software engineering(May/Jun 2011)
Requirements engineering emphasizes the use of systematic and repeatable techniques that ensure the completeness, consistency, and relevance of the system requirements .

Specifically,	requirements	engineering	encompasses	requirements	elicitation, analysis, specification, verification, and management, where

· Requirements elicitation is the process of discovering, reviewing, documenting, and understanding the user's needs and constraints for the system.
· Requirements analysis is the process of refining the user's needs and constraints.
· Requirements specification is the process of documenting the user's needs and constraints clearly and precisely.
· Requirements verification is the process of ensuring that the system requirements are complete, correct, consistent, and clear.
· Requirements management is the process of scheduling, coordinating, and documenting the requirements engineering activities (that is, elicitation, analysis, specification, and verification)

Functional requirements:

· Describe functionality or system services
· Depend on the type of software, expected users and the type of system where the software is used
· Functional user requirements may be high-level statements of what the system should do but functional system requirements should describe the system services in detail

Examples of functional requirements

The system shall provide appropriate viewers for the user to read documents in the document store.

Every order shall be allocated a unique identifier (ORDER_ID) which the user shall be able to copy to the account’s permanent storage area.

Non-functional requirements:

· Define system properties and constraints e.g. reliability, response time and storage requirements. Constraints are I/O device capability, system representations, etc.
· Process requirements may also be specified mandating a particular CASE system, programming language or development method
· Non-functional requirements may be more critical than functional requirements. If these are not met, the system is useless
 (
Product requir ements
Reliability requir ements
Portability
requirements
Interoperability
requirements
Ethical
requirements
Delivery
requirements
Implementation
requir ements
Standards
requirements
Performance
requirements
Space requir ements
Privacy
requirements
Safety
requirements
Legislative
requirements
Usability
requirements
Ef ficiency requir ements
rnal
ements
Exte
requir
Or ganizational requir ements
Non-functional requir ements
)

11. explain transform mapping with syitable example and design steps involved in it.(Nov/Dec 2012)
Transform mapping is a set of design steps that allows a DFD with transform flow characteristics to be mapped into a specific architectural style. In this section transform mapping is described by applying design steps to an example system—a portion of the SafeHome security software.

An Example

The SafeHome security system is representative of many computer-based products and systems in use today. The product monitors the real world and reacts to changes that it encounters. It also interacts with a user through a

series of typed inputs and alphanumeric displays. The level 0 data flow diagram for SafeHome, is shown in figure
[image:]

During requirements analysis, more detailed flow models would be created for SafeHome. In addition, control and process specifications, a data dictionary, and various behavioral models would also be created.

Design Steps

· Step 1. Review the fundamental system model.
· Step 2. Review and refine data flow diagrams for the software.
· Step 3. Determine whether the DFD has transform or transaction flow characteristics.
· Step 4. Isolate the transform center by specifying incoming and outgoing flow boundaries
· Step 5. Perform "first-level factoring." Program structure represents a top- down distribution of control.
· Step 6. Perform "second-level factoring." Second-level factoring is accomplished by mapping individual transforms (bubbles) of a DFD into appropriate modules within the architecture.
· Step 7. Refine the first-iteration architecture using design heuristics for improved software quality.

12. what is system modeling?explain the process of creating models and the factors that should be considered when building block.(Nov/Dec 2013)
DEFINITION OF A MODEL

A model is a representation containing the essential structure of some object or event in the real world.

The representation may take two major forms:

· Physical, as in a model airplane or architect's model of a building
· Symbolic, as in a natural language, a computer program, or a set of mathematical equations.

In either form, certain characteristics are present by the nature of the definition of a model.

· SFM process is designed to identify and apply the critical success factors necessary to promote growth and development of emerging growth technology companies

There are five types of coverage where the term process model has been defined differently:

· Activity-oriented: related set of activities conducted for the specific purpose of product definition; a set of partially ordered steps intended to reach a goal.[4]
· Product-oriented: series of activities that cause sensitive product transformations to reach the desired product.[5]
· Decision-oriented: set of related decisions conducted for the specific purpose of product definition.
· Context-oriented: sequence of contexts causing successive product transformations under the influence of a decision taken in a context.
· Strategy-oriented: allow building models representing multi-approach processes and plan different possible ways to elaborate the product based on the notion of intention and strategy.
Processes can be of different kinds These definitions “correspond to the various ways in which a process can be modelled”.

· Strategic processes
· investigate alternative ways of doing a thing and eventually produce a plan for doing it
· are often creative and require human co-operation; thus, alternative generation and selection from an alternative are very critical activities
· Tactical processes
· help in the achievement of a plan
· are more concerned with the tactics to be adopted for actual plan achievement than with the development of a plan of achievement
· Implementation processes
· are the lowest level processes
· are directly concerned with the details of the what and how of plan implementation

[bookmark: unit_4.pdf]UNIT – IV

1. Describe software failure and faults. What is test coverage criteria? (Nov/Dec 2005)

Discuss testing issue

Reasons to the failures
· Requirements incomplete, inconsistent, impossible to implement

· Wrong interpretation of the requirements

· The system design may contain a fault (misunderstandingrequirements, wrong architecture, incomplete design)

· Program design may contain a fault - wrong algorithm

· The program code may be wrong - improper, incomplete, inconsistent implementation

· Documentation can be wrong - can describe incorrectly the
· behavior of the system

[image:]

2. Discuss when to stop testing. What are performance testing . (Nov/Dec 2005
)

Performance testing is the process of determining the speed or effectiveness of a computer, network or software program or device.

Example. Load testing Stress testing Soak testing
Spike testing Configuration testing Isolation testing

3. briefly discuss the various software testing strategies.(May/June 2006)

Software Testing Strategies:

· Unit Testing – makes heavy use of testing techniques that exercise specific control paths to detect errors in each software component individually
· Integration Testing – focuses on issues associated with verification and program construction as components begin interacting with one another
· Validation Testing – provides assurance that the software validation criteria (established during requirements analysis) meets all functional, behavioural, and performance requirements
· System Testing – verifies that all system elements mesh properly and that overall system function and performance has been achieved

4. what is load testing? How it differs from other testing? For what application load testing suitable? Also bring out its merits. (Nov/Dec 2007)

· Load testing is a type of non-functional testing.
· A load test is type of software testing which is conducted to understand the behaviour of the application under a specific expected load.
· Load testing is performed to determine a system’s behaviour under both normal and at peak conditions.
· It helps to identify the maximum operating capacity of an application as well as any bottlenecks and determine which element is causing degradation. E.g. If the number of users are increased then how much CPU, memory will be consumed, what is the network and bandwidth response time.

· Load testing can be done under controlled lab conditions to compare the capabilities of different systems or to accurately measure the capabilities of a single system.
· Load testing involves simulating real-life user load for the target application. It helps you determine how your application behaves when multiple users hits it simultaneously.
· Load testing differs from stress testing, which evaluates the extent to which a system keeps working when subjected to extreme work loads or when some of its hardware or software has been compromised.
· The primary goal of load testing is to define the maximum amount of work a system can handle without significant performance degradation.
· Examples of load testing include:
· Downloading a series of large files from the internet.
· Running multiple applications on a computer or server simultaneously.
· Assigning many jobs to a printer in a queue.
· Subjecting a server to a large amount of traffic.
· Writing and reading data to and from a hard disk continuously.

5. Explain in detail the various testing strategies.(Apr/May 2008)

The choice oftest approachesortest strategy is one of the most powerful factor in the success of the test effort and the accuracy of the test plans and estimates. This factor is under the control of the testers and test leaders.
Analytical: Let us take an example to understand this. The risk-based strategy involves performing a risk analysis using project documents and stakeholder input, then planning, estimating, designing, and prioritizing the tests based on risk.
Model-based: Let us take an example to understand this. You can build mathematical models for loading and response for e commerce servers, and test based on that model.
Methodical: Let us take an example to understand this. You might have a checklist that you have put together over the years that suggests the major areas of testing to run or you might follow an industry-standard for software quality, such as ISO 9126, for your outline of major test areas.
Process – or standard-compliant: Let us take an example to understand this. You might adopt the IEEE 829 standard for your testing, using books such as [Craig, 2002] or [Drabick, 2004] to fill in the methodological gaps. Alternatively, you might adopt one of the agile methodologies such as Extreme Programming.
Dynamic: Let us take an example to understand this. You might create a lightweight set of testing guide lines that focus on rapid adaptation or known weaknesses in software.
Consultative or directed: Let us take an example to understand this. You might ask the users or developers of the system to tell you what to test or even rely on them to do the testing. Consultative or directed strategies have in common the reliance on a

group of non-testers to guide or perform the testing effort and typically emphasize the later stages of testing simply due to the lack of recognition of the value of early testing.
Regression-averse: Let us take an example to understand this. You might try to automate all the tests of system functionality so that, whenever anything changes, you can re-run every test to ensure nothing has broken.
6. How the RST related into black box testing. Give Example.(Apr/May 2010) Black Box Testing
The technique of testing without having any knowledge of the interior
workings of the application is Black Box testing. The tester is oblivious to the system architecture and does not have access to the source code. Typically, when performing a black box test, a tester will interact with the system's user interface by providing inputs and examining outputs without knowing how and where the inputs are worked upon.
[image:]

	Advantages	D
	isadvantages

	· Well suited and efficient for large code segments.
· Code Access not required.
· Clearly separates user's perspective from the developer's perspective through visibly defined roles.
· Large numbers of moderately skilled testers can test the application with no knowledge of implementation, programming language or operating systems.
	· Limited Coverage since only a selected number of test scenarios are actually performed.
· Inefficient testing, due to the fact that the tester only has limited knowledge about an application.
· Blind Coverage, since the tester cannot target specific code segments or error prone areas.
· The test cases are difficult to design.

	

Types of black box testing

Random testing
Randomly select the input. Three conditions.
Equivalence class partitioning

Adv of	Equivalence class partitioning List of conditions.
Figure: A specification of a square root function Example of equivalance class reporting table
Boundary value analysis List the conditions
Figure: Boundaries of on Equivalence partition Example of Boundary value analysis.
7. what is the necessity of unit testing. write all unit test consideration.(Apr/May 2010)
Unit Testing

This type of testing is performed by the developers before the setup is handed over to the testing team to formally execute the test cases. Unit testing is performed by the respective developers on the individual units of source code assigned areas. The developers use test data that is separate from the test data of the quality assurance team.

The goal of unit testing is to isolate each part of the program and show that individual parts are correct in terms of requirements and functionality.

Limitations of Unit Testing

Testing cannot catch each and every bug in an application. It is impossible to evaluate every execution path in every software application. The same is the case with unit testing.

There is a limit to the number of scenarios and test data that the developer can use to verify the source code. So after he has exhausted all options there is no choice but to stop unit testing and merge the code segment with other units.

8. Explain about system testing.(Apr/May 2010) System Testing
This is the next level in the testing and tests the system as a whole. Once all the components are integrated, the application as a whole is tested rigorously to see that it meets Quality Standards. This type of testing is performed by a specialized testing team.

System testing is so important because of the following reasons:

· System Testing is the first step in the Software Development Life Cycle, where the application is tested as a whole.

· The application is tested thoroughly to verify that it meets the functional and technical specifications.
· The application is tested in an environment which is very close to the production environment where the application will be deployed.
· System Testing enables us to test, verify and validate both the business requirements as well as the Applications Architecture.


9. Brief about 3D function point measures.(Apr/May 2010)
Function Point Variations Mk II Function Points
Discovered weaknesses in Albrecht's approach Feature Points
Function points were not working for all classes of applications 3D Function Points
Designed to solve two problems with Albrecht approach

10. Discuss in detail about test strategies for conventional software(May/Jun 2011)
Strategy for Testing Conventional Software

[image:]
Unit testing

· Exercises specific paths in a component's control structure to ensure complete coverage and maximum error detection
· Components are then assembled and integrated

· Integration testing

· Focuses on inputs and outputs, and how well the components fit together and work together
· Validation testing

· Provides final assurance that the software meets all functional, behavioral, and performance requirements
· System testing

· Verifies that all system elements (software, hardware, people, databases) mesh properly and that overall system function and performance is achieved

11. Write shorts notes on black box and white box testing(May/Jun 2011)

Black Box Testing
 (
Disadvantages
)The technique of testing without having any knowledge of the interior workings of the application is Black Box testing. The tester is oblivious to the system architecture and does not have access to the source code. Typically, when performing a black box test, a tester will interact with the system's user interface by providing inputs and examining outputs without knowing how and where the inputs are worked upon.

 (
Advantages
)

	
Well	suited	and	efficient	for	large	code segments.
	
Limited Coverage since only a selected number of test scenarios are actually performed.

	Code Access not required.

Clearly separates user's perspective from the developer's perspective through visibly defined roles.

Large numbers of moderately skilled testers can test the application with no knowledge of implementation, programming language or operating systems.
	Inefficient testing, due to the fact that the tester only has limited knowledge about an application.

Blind Coverage, since the tester cannot target specific code segments or error prone areas.

The test cases are difficult to design.

White Box Testing
White box testing is the detailed investigation of internal logic and structure of the code. White box testing is also called glass testing or open box testing. In order to perform white box testing on an application, the tester needs to possess knowledge of the internal working of the code.

The tester needs to have a look inside the source code and find out which unit/chunk of the code is behaving inappropriately.

	Advantages
	Disadvantages

	
As the tester has knowledge of the source code, it becomes very easy to find out which type of data can help in testing the application effectively.

It helps in optimizing the code.

Extra lines of code can be removed which can bring in hidden defects.
	
Due to the fact that a skilled tester is needed to perform white box testing, the costs are increased.

Sometimes it is impossible to look into every nook and corner to find out hidden errors that may create problems as many paths will go untested.

	
Due to the tester's knowledge about the code, maximum coverage is attained during test scenario writing.
	It is difficult to maintain white box
testing as the use of specialized tools like code analyzers and debugging tools are required.

12. writes shorts note on

(i) structural testing

(ii) regression testing(Nov/Dec 2012)

Regression testing is the process of testing changes to computer programs to make sure that the older programming still works with the new changes. Regression testing is a normal part of the program development process and, in larger companies, is done by code testing specialists. Test department coders develop code test scenarios and exercises that will test new units of code after they have been written. These test cases form what becomes the test bucket. Before a new version of a software product is released, the old test cases are run against the new version to make sure that all the old capabilities still work. The reason they might not work is because changing or adding new code to a program can easily introduce errors into code that is not intended to be changed.

To explore how regression testing is used in the enterprise, here are some additional resources for learning about software quality assurance tools:
Software testing fundamentals - Regression testing: Regression testing ensures that little changes don't break software. Good regression testers need to know what they're looking for, and this guide explains how.
Regression testing is more than retesting: Regression testing is a necessary component to any software development lifecycle. Expert Mike Kelly explains the motivations for conducting regression tests.

13. discuss the difference between blockbox and whitebox testing and suggest how they can be together in the testing process(Nov/Dec 2012)

	Criteria
	Black Box Testing
	White Box Testing

	

Definition
	Black Box Testing is a software testing method in which the internal structure/ design/ implementation of the item being tested is NOT known to the tester
	White Box Testing is a software testing method in which the internal structure/ design/ implementation of the item being tested is known to the tester.

	Levels Applicable To
	Mainly applicable to higher levels of testing: Acceptance Testing

System Testing
	Mainly applicable to lower levels of testing:Unit Testing

Integration Testing

	Responsibility
	Generally, independent Software Testers
	Generally, Software Developers

	Programming Knowledge
	Not Required
	Required

	Implementation Knowledge
	Not Required
	Required

	Basis	for	Test Cases
	Requirement Specifications
	Detail Design

14. Explain in detail about Integration testing.(May/Jun 2014)

A group of dependent components are tested together to ensure their quality of their integration
unit.
· The objective is to take unit tested components and build a program structure that has been
dictated by software design.
· The focus of integration testing is to uncover errors in
· Design and construction of software architecture.
· Integrated functions or operations at subsystem level.
· Interfaces and interactions between them.
· Resource integration and/or environment integration.
· The integration testing can be carried out using two approaches.
I. The non-incremental integration
2. Incremental integration Integration testing approach
Non-incremental integration Incremental integration Top down testing
Big bang
Bottom up integration Regression testing Smoke testing
· The non-incremental integration is given by the “big bang” approach. All components are
combined in advance. The entire program is tested as a whole. And chaos usually results. A set
of errors is tested as a whole. Correction is difficult because isolation of causes is complicated by

the size of the entire program. Once these errors are corrected new ones appear.
This process continues infinitely.
Advantage of big-bang: This approach is simple. Disadvantages : 1. It is hard to debug.
2. It is not easy to isolate errors while testing.
3. In this approach it is not easy to validate test results.
4. After performing testing, it is impossible to form an integrated system.
· An incremental construction strategy includes
1) Top down integration
2) Bottom up integration
3) Regression testing
4) Smoke testing

15. Explain in detail about basic path testing.(May/Jun 2014)

Basis path testing is a white-box testing technique first proposed by Tom McCabe . The basis path method enables the test case designer to derive a logical complexity measure of a procedural design and use this measure as a guide for defining a basis set of execution paths. Test cases derived to exercise the basis set are guaranteed to execute every statement in the program at least one time during testing.

[image:]Flow Graph Notation
Before the basis path method can be introduced, a simple notation for the representation of control flow, called a flow graph (or program graph) must be introduced. The flow graph depicts logical control flow using the notation illustrated in figure above. Each structured construct has a corresponding flow graph symbol. To illustrate the use of a flow graph, we consider the procedural design representation in figure below. Here, a flowchart is used to depict program control structure.

[bookmark: unit_5.pdf]UNIT – V

1. Explain the various feature of CASE repository in detail(May/June May/Jun 2006)
The Role of the Repository in I-CASE

The repository for an I-CASE environment is the set of mechanisms and data structures that achieve data/tool and data/data integration. It provides the obvious functions of a database management system, but in addition, the repository performs or precipitates the following functions.

· Data integrity includes functions to validate entries to the repository, ensure consistency among related objects, and automatically perform "cascading" modifications when a change to one object demands some change to objects related to it.

· Information sharing provides a mechanism for sharing information among multiple developers and between multiple tools, manages and controls multiuser access to data and locks or unlocks objects so that changes are not inadvertently overlaid on one another.

· Data/tool integration establishes a data model that can be accessed by all tools in the I-CASE environment, controls access to the data, and performs appropriate configuration management functions.

· Data/data integration is the database management system that relates data objects so that other functions can be achieved.

•Methodology enforcement defines an entity-relationship model stored in the repository that implies a specific paradigm for software engineering; at a minimum, the relationships and objects define a set of steps that must be conducted to build the contents of the repository.

•Document standardization is the definition of objects in the database that leads directly to a standard approach for the creation of software engineering documents.

2. What are the processes involved in software configuration management? Exaplincleary with help of an example. (Nov/Dec Nov/Dec 2007)

Configuration management is a topic that often confuses new practitioners. So, let me describe it briefly:

· Configuration management determines clearly about the items that make up the software or system. These items include source code, test scripts, third-

party software, hardware, data and both development and test documentation.
· Configuration management is also about making sure that these items are managed carefully, thoroughly and attentively during the entire project and product life cycle.
· Configuration management has a number of important implications for testing. Like configuration management allows the testers to manage their testware and test results using the same configuration management mechanisms.
· Configuration management also supports the build process, which is important for delivery of a test release into the test environment. Simply sending Zip archives by e-mail will not be sufficient, because there are too many opportunities for such archives to become polluted with undesirable contents or to harbor left-over previous versions of items. Especially in later phases of testing, it is critical to have a solid, reliable way of delivering test items that work and are the proper version.

3. it is proposed to develop a depository for a case tool for the inhouse development of a software. Draw the structure of depository and include as many feature as possible. Explain the same. (Nov/Dec Nov/Dec 2007)

· Central Repository - CASE tools require a central repository, which can serve as a source of common, integrated and consistent information. Central repository is a central place of storage where product specifications, requirement documents, related reports and diagrams, other useful information regarding management is stored. Central repository also serves as data dictionary.

[image:]

4. It is proposed to evaluate various case tools available in the market. Suggest a scheme to do the same. (Nov/Dec Nov/Dec 2007)
Diagram tools
example, Flow Chart Maker tool for creating state-of-the-art flowcharts.

Process Modeling Tools
example, EPF Composer

Project Management Tools
example, Creative Pro Office, Trac Project, Basecamp.

Documentation Tools
example, Doxygen, DrExplain, Adobe RoboHelp for documentation.

Analysis Tools
example, Accept 360, Accompa, CaseComplete for requirement analysis, Visible Analyst for total analysis.
Design Tools
example, Animated Software Design

Configuration Management Tools
example, Fossil, Git, Accu REV. Change Control Tools
Programming Tools
example, Cscope to search code in C, Eclipse.

Prototyping Tools
example, Serena prototype composer, Mockup Builder

5. Discuss on the various software cost estimation techniques. (April/May Apr/May 2008)

· Cost estimation

This might be considered as the most difficult of all because it depends on more elements than any of the previous ones. For estimating project cost, it is required to consider -

· Size of software
· Software quality
· Hardware

· Additional software or tools, licenses etc.
· Skilled personnel with task-specific skills
· Travel involved
· Communication
· Training and support

For an effective management accurate estimation of various measures is a must. With correct estimation managers can manage and control the project more efficiently and effectively.

· COCOMO

COCOMO stands for COnstructiveCOstMOdel, developed by Barry W. Boehm. It divides the software product into three categories of software: organic, semi-detached and embedded.

6. List out the frequently used metrics. Example each of them. (April/May Apr/May 2008)

some software metrics:

· Size Metrics - LOC (Lines of Code), mostly calculated in thousands of delivered source code lines, denoted as KLOC.Function Point Count is measure of the functionality provided by the software. Function Point count defines the size of functional aspect of software.

· Complexity Metrics - McCabe’s Cyclomatic complexity quantifies the upper bound of the number of independent paths in a program, which is perceived as complexity of the program or its modules. It is represented in terms of graph theory concepts by using control flow graph

.

· Quality Metrics - Defects, their types and causes, consequence, intensity of severity and their implications define the quality of product. The number of defects found in development process and number of defects reported by the client after the product is installed or delivered at client-end, define quality of product.

· Process Metrics - In various phases of SDLC, the methods and tools used, the company standards and the performance of development are software process metrics.

· Resource Metrics - Effort, time and various resources used, represents metrics for resource measurement.

7. What are upper and lower CASE tools? What is the purpose of upper- CASE tools? (April/May Apr/May 2008)

Upper Case Tools - Upper CASE tools are used in planning, analysis and design stages of SDLC.
Lower Case Tools - Lower CASE tools are used in implementation, testing and maintenance.

[image:]

8. Explain in detail the COCOMO model? (April/May Apr/May 2008)

· COCOMO

COCOMO stands for COnstructiveCOstMOdel, developed by Barry W. Boehm. It divides the software product into three categories of software: organic, semi-detached and embedded.

There are three levels in the COCOMO hierarchy:

Basic COCOMO: Computes software development effort and cost as a function of program size expressed in estimated DSIs. There are three modes within Basic COCOMO:
Organic Mode: Development projects typically are uncomplicated and involve small experienced teams. The planned software is not considered innovative and requires a relatively small amount of DSIs (typically under 50,000).

Semidetached Mode: Development projects typically are more complicated than in Organic Mode and involve teams of people with mixed levels of experience. The software requires no more than 300,000 DSIs. The project has characteristics of both projects for Organic Mode and projects for Embedded Mode.
EmbeddedMode: Development projects must fit into a rigid set of requirements because the software is to be embedded in a strongly joined complex of hardware, software, regulations and operating procedures.
Intermediate COCOMO: an extension of the Basic model that computes software development effort by adding a set of "cost drivers," that will determine the effort and duration of the project, such as assessments of personnel and hardware.
Detailed COCOMO: an extension of the Intermediate model that adds effort multipliers for each phase of the project to determine the cost driver.

9. Explain the various feature of CASE repository in detail (May/Jun 2006) The Role of the Repository in I-CASE
The repository for an I-CASE environment is the set of mechanisms and data structures that achieve data/tool and data/data integration. It provides the obvious functions of a database management system, but in addition, the repository performs or precipitates the following functions :

· Data integrity includes functions to validate entries to the repository, ensure consistency among related objects, and automatically perform "cascading" modifications when a change to one object demands some change to objects related to it.

· Information sharing provides a mechanism for sharing information among multiple developers and between multiple tools, manages and controls multiuser access to data and locks or unlocks objects so that changes are not inadvertently overlaid on one another.

· Data/tool integration establishes a data model that can be accessed by all tools in the I-CASE environment, controls access to the data, and performs appropriate configuration management functions.

· Data/data integration is the database management system that relates data objects so that other functions can be achieved.

· Methodology enforcement defines an entity-relationship model stored in the repository that implies a specific paradigm for software engineering; at a minimum, the relationships and objects define a set of steps that must be conducted to build the contents of the repository.

· Document standardization is the definition of objects in the database that leads directly to a standard approach for the creation of software engineering documents.

10. It is proposed to evaluate various case tools available in the market. Suggest a scheme to do the same (Nov/Dec 2007)
· Diagram tools
example, Flow Chart Maker tool for creating state-of-the-art flowcharts.

· Process Modeling Tools
example, EPF Composer

· Project Management Tools
example, Creative Pro Office, Trac Project, Basecamp.

· Documentation Tools
example, Doxygen, DrExplain, Adobe RoboHelp for documentation.

· Analysis Tools
example, Accept 360, Accompa, CaseComplete for requirement analysis, Visible Analyst for total analysis.
· Design Tools
example, Animated Software Design

· Configuration Management Tools
example, Fossil, Git, Accu REV.

· Programming Tools
example, Cscope to search code in C, Eclipse.

· Prototyping Tools
example, Serena prototype composer, Mockup Builder.

11. Discuss on the various software cost estimation techniques (Apr/May 2008)

· Cost estimation

This might be considered as the most difficult of all because it depends on more elements than any of the previous ones. For estimating project cost, it is required to consider -

· Size of software
· Software quality
· Hardware
· Additional software or tools, licenses etc.

· Skilled personnel with task-specific skills
· Travel involved
· Communication
· Training and support

For an effective management accurate estimation of various measures is a must. With correct estimation managers can manage and control the project more efficiently and effectively.

· COCOMO

COCOMO stands for Constructive Cost Model , developed by Barry W. Boehm. It divides the software product into three categories of software: organic, semi-detached and embedded.

12. Explain the taxonomy of CASE Tools (Nov/Dec 2009)

CASE Tool Taxonomy
CASE tools can be classified by
· by function,or
· by user type (e.g. manager, tester), or
· by stage in SE process (e.g. requirements, test) The following taxonomy is classified by function.
Business Information Tools

model business information flow. The tools represent business data object and model their flow. Network tools could be modified to yield the same functionality.
Process Management Tools

model processes. You have to understand the process in order to model it. The tools help you capture process. This is a key component of TQI.
Project Planning Tools

help plan and schedule projects. Examples are PERT and CPM. Finding parallelism and eliminating bottlenecks assist in streamlining projects.
Risk Analysis Tools

helps build a risk table from the schedule outlining the risk each component of the production process and categorizing the risks as catastrophic, critical, marginal, or negligible. A cost is associated with each risk. Calculated formulas measure the risk at each stage of development.
Project Management Tools

track the progress of the project. They feed from the Project Scheduling tools and then use those tools to update plans and schedules.

Requirements Tracing Tools

provide a systematic approach to isolate customer requirements and then to trace these requirements in each stage of development. In particular, one can take implementation code and point to the requirement that is met by the code.

Metrics Tools

capture specific metrics that provide an overall measure of quality. Examples could be "defects per function point", "LOC/person-month", and so forth.
Documentation Tools

include word processors that give templates for the organization process documents.

System Software Tools

includes email, bulletin boards, and www access.

Quality Assurance Tools

are actually metrics tools that audit source code to insure compliance with language standards. (lint is an ancient example)
Database Management Tools

provides consistent interfaces for the project for all data, in particular the configuration objects are primary repository elements.
Software configuration Management Tools

is the keystone to CASE. It assists with identification, version control, change control, auditing, and status accounting.

13..Factors to be considered when the structure of a software team is chosen (APR/MAY 2010)
Explain team role in software projects. General Team Roles
Requirements Analyst

· Solicitation and elaboration of stakeholder needs and requirements.

Technical Writer

· Providing early feedback to the core and extended teams about e.g. desirable features.
· Creating closer and more productive relationships with the various stakeholder communities (through e.g. creating tutorials, reference manuals, technical overviews, brochures, video, audio, etc.)

Designer

· Finding solutions to known requirements.
· Exploring the requirement space.

Coder

· Advising on economic feasibility of implementing designs / requirements in available programming languages.
· Implementing i.e. user stories – in whatever language is most suited to the problem at hand (c.f. Polyglot Programming).

14. CASE Tools (May/Jun 2011)

CASE tools are set of software application programs, which are used to automate SDLC activities. CASE tools are used by software project managers, analysts and engineers to develop software system.
[image:]
Components of CASE Tools
CASE tools can be broadly divided into the following parts based on their use at a particular SDLC stage:

· Central Repository - CASE tools require a central repository, which can serve as a source of common, integrated and consistent information. Central repository is a central place of storage where product specifications, requirement documents, related reports and diagrams, other useful

information regarding management is stored. Central repository also serves as data dictionary.
[image:]

· Upper Case Tools - Upper CASE tools are used in planning, analysis and design stages of SDLC.

· Lower Case Tools - Lower CASE tools are used in implementation, testing and maintenance.

· Integrated Case Tools - Integrated CASE tools are helpful in all the stages of SDLC, from Requirement gathering to Testing and documentation.

CASE tools can be grouped together if they have similar functionality, process activities and capability of getting integrated with other tools.
Scope of Case Tools
The scope of CASE tools goes throughout the SDLC.

Case Tools Types
Now we briefly go through various CASE tools

Diagram tools
These tools are used to represent system components, data and control flow among various software components and system structure in a graphical form. For example, Flow Chart Maker tool for creating state-of-the-art flowcharts.

Process Modeling Tools
Process modeling is method to create software process model, which is used to develop the software. Process modeling tools help the managers to choose a process model or modify it as per the requirement of software product. For example, EPF Composer
Project Management Tools
These tools are used for project planning, cost and effort estimation, project scheduling and resource planning. Managers have to strictly comply project execution with every mentioned step in software project management. Project management tools help in storing and sharing project information in real-time throughout the organization. For example, Creative Pro Office, Trac Project, Basecamp.
Documentation Tools
Documentation in a software project starts prior to the software process, goes throughout all phases of SDLC and after the completion of the project.

Documentation tools generate documents for technical users and end users. Technical users are mostly in-house professionals of the development team who refer to system manual, reference manual, training manual, installation manuals etc. The end user documents describe the functioning and how-to of the system such as user manual. For example, Doxygen, DrExplain, Adobe RoboHelp for documentation.
Analysis Tools
These tools help to gather requirements, automatically check for any inconsistency, inaccuracy in the diagrams, data redundancies or erroneous omissions. For example, Accept 360, Accompa, CaseComplete for requirement analysis, Visible Analyst for total analysis.
Design Tools
These tools help software designers to design the block structure of the software, which may further be broken down in smaller modules using refinement techniques. These tools provides detailing of each module and interconnections among modules. For example, Animated Software Design

Configuration Management Tools
An instance of software is released under one version. Configuration Management tools deal with –

· Version and revision management
· Baseline configuration management
· Change control management
15. given (Nov/Dec 2012) Number of user inputs = 15 Number user outputs = 13 Number of external interface = 11
1 function point = 20 LOC (as fourth generation language is used

Values of constant used in basic COCOMO model, a=2.4,b=1.05,c=2.5,d=0.38 Calculate the effort and duration using above details for basic COCOMO model
16. Write a neat sketch draw the architecture model for an integration framework for CASE tool. (Nov/Dec 2012)
A integration framework for CASE (computer-aided software engineering) environments identifies five sets of services that such an environment should provide

The five levels of service in integration framework are:

· Data repository services These provide facilities for the storage and management of data items and their relationships.
· Data integration services These provide facilities for managing groups or the establishment of relationships between them. These services and data repository services are the basis of data integration in the environment.
· Task management services These provide facilities for the definition and enactment of process models. They support process integration.
· Message services These provide facilities for tool-tool, environment-tool and environment-environment communications. They support control integration.
· User interface services These provide facilities for user interface development. They support presentation integration.

17. With a neat sketch explain in detail the building blocks for CASE (Nov/Dec 2012)
[image:]

18. Explain COCOMO model for estimation (Nov/Dec 2013)

There are three levels in the COCOMO hierarchy:

Basic COCOMO:computes software development effort and cost as a function of program size expressed in estimated DSIs. There are three modes within Basic COCOMO:
Organic Mode:Development projects typically are uncomplicated and involve small experienced teams. The planned software is not considered innovative and requires a relatively small amount of DSIs (typically under 50,000).

Semidetached Mode:Development projects typically are more complicated than in Organic Mode and involve teams of people with mixed levels of experience. The software requires no more than 300,000 DSIs. The project has characteristics of both projects for Organic Mode and projects for Embedded Mode.
Embedded Mode:Development projects must fit into a rigid set of requirements because the software is to be embedded in a strongly joined complex of hardware, software, regulations and operating procedures.
Intermediate COCOMO:an extension of the Basic model that computes software development effort by adding a set of "cost drivers," that will determine the effort and duration of the project, such as assessments of personnel and hardware.
Detailed COCOMO:an extension of the Intermediate model that adds effort multipliers for each phase of the project to determine the cost driver

ZIPF’s LAW:Zipf's Law is meaningless when talking about any program written in any contemporary programming language because every programming language has a limited number of keywords and some keywords are used more than others.
For example, the keyword goto exists in most modern languages.

19. The process of Delphi method ? advantages and disadvantages (Nov/Dec 2013)

PROCESS:

· The Delphi technique comprises several steps involving participants who may or may not meet face to face.
· The participants (or panel) might be employees of a specific company conducting a Delphi project or experts selected from the outside for their in- depth knowledge of a given academic discipline or manufacturing process.

ADVANTAGE:
There are several advantages to the Delphi technique.

· One of the most significant is its versatility. The technique can be used in a wide range of environments, e.g., government planning, business and industry predictions, volunteer group decisions.
· Another important advantage lies in the area of expenses.

· For example, the Delphi technique saves corporations money in travel expenses.
· They do not have to gather participants from several points of the globe in one place to resolve a problem or predict the future, yet they still can generate relevant ideas from the people best suited to offer their expertise.
· This is particularly beneficial to multinational corporations, whose executives and key personnel may be based in cities as far apart as Melbourne, New York, Tokyo, Buenos Aires, and London.
· The technique also protects participants' anonymity. Thus, they feel better protected from criticism over their proposed solutions and from the pitfalls of "groupthink",

i.e., the withholding by group members of different views in order to appear in agreement. On the other hand, the technique has its drawbacks.
DISADVANTAGE

· The Delphi technique is somewhat time consuming, which renders it ineffective when fast answers are needed.
· It might also be deficient in the degree of fully thought-out resolutions. People acting together in a group setting benefit from others' ideas. Thus, there might be more insightful and pragmatic resolutions to problems offered by people in interactive settings, e.g., through the nominal group technique,
· in which participants are gathered in one place but operate independently of one another.

However, in situations where time is not of the essence or group interaction is not important, these disadvantages diminish in importance.

.

20. Explain in detail about Software Configuration Management (May/Jun 2014)

Software Configuration management is a set of activities carried out for identfying, organising and controlling changes throughout the lifecycle of computer software.
During the development of software change must be managed and controlled in order to improve quality and reduce error. Hence Software Configuration Management is a quality assurance activity that is applied throughout the software process.
Need for SCM
The software configuration management is concerned with managing the changes in the evolving
software. If the changes are not controlled at all then this stream of uncontrolled change can
cause the well-running software project into chaos. Hence it is essential to perform following
activities -
· Identify these changes
· Control the changes
· Ensure that the changes are properly implemented and
· Report these changes to others.
The software configuration management may be seen as part of quality management process.
Baseline
· The IEEE (IEEE Std. No. 610.12-1990) defines a baseline as:
A specification or product that has been formally reviewed and agreed upon, that thereafter
serves as the basis for further development, and that can be changed only through formal changecontrol procedures.
· A baseline is a milestone in the development of software that is marked by the delivery of oneor more software configuration items and the approval of them is obtained through formaltechnical review
· Further changes to the program architecture (which is actually documented in the design
model) can be made only after each has been evaluated and approved.
Configuration

Management Planning
Configuration planning defines the standards and procedures that should be used for configuration management. Initially configuration management standards must be set. Thesestandards must be adapted to fit the requirements and to identify constraints. The configurationmanagement plan consists of -
· Definition of managed configuration items and schemes used for identifying the entities.
· Find out the targets that are responsible for configuration management procedures.
· Define configuration management policies which can be used for control and version
management.
· Specify the name of the tool used for configuration management along with its use.
· Describe configuration management database structure so that stored information can bemaintained.
Software Configuration Item Identification
A Software Configuration Item (SCI) is information that is created as part of the software
engineering process.
Examples of Software Configuration Items are
· COMPUTER PROGRAMS
· Source programs
· Executable programs
· DOCUMENTS DESCRIBING THE PROGRAMS
· Technical manual
· User’s manual
· DATA
· Program components or functions
· External data
· File structure
For each type of item, there may be a large number of different individual items produced. Forinstance there may be many documents for a software specification

such as project plan, qualityplan, test plan, design documents, programs, test reports, review reports. These SCI or items willbe produced during the project, stored, retrieved, changed, stored again, and so on.Each configuration item must have a unique name, and a description or specification whichdistinguishes it from other items of the same type.

21. Explain about Risk management (May/Jun 2014) Software Risk Management:
Since there could be various risks associated with the software development projects, the key to identify and manage those risks is to know about the concepts of software risk management. Many concepts about software risk management could be identified but the most important are risk index, risk analysis, and risk assessment (Hoodat, H. &Rashidi, H.).
Risk Index: Generally risks are categorized into two factors namely impact of risk events and probability of occurrence.
RiskAnalysis: There are quite different types of risk analysis that can be used. Basically, risk analysis is used to identify the high risk elements of a project in software engineering.
RiskAssessment: Risk assessment is another important case that integrates risk management and risk analysis.
Risk Classification:
The key purpose of classifying risk is to get a collective viewpoint on a group of factors
· SOFTWARE REQUIREMENT RISKS
-.Lack of analysis for change of requirements.
- Change extension of requirements
· Lack of report for requirements
· SOFTWARE COST RISKS
· Lack of good estimation in projects
· Unrealistic schedule
· The hardware does not work well
· SOFTWARE SCHEDULING RISKS

· Inadequate budget
· Change of requirements and extension of requirements
· Human errors
· SOFTWARE QUALITY RISKS
· Inadequate documentation
· Lack of project standard 3.Lack of design documentation

image3.jpeg
 ——————

Specification Initial Version
: Intermediate
i
Validatlon
—

image4.jpeg
Risk Manageert

i

!

Risk Analys Risk Control
l v
Risk Assessent| | Risk Evahiation Risk Reduction RiskMonitoting RiskReporting

image5.png
==
=

image6.jpeg
Build1

Design & L[Testing o Tmplementation
Dovelopment
Build 2
rm— _| Design & L[Testing o] Tmplementation
Development
Buld N
Desien & Tosting Tmplementation
|t] .

Incremental Life Cycle Model

image7.jpeg
Objective
Identification

Next Phase
Planning

>

2

W‘

2
3|5
o
HE
=3
o

\
D
O,
D
D
<

Alternate
Evaluation

Product
Development

image8.jpeg
° Focus on process
mproventant

° Process measured
and controlled

° Process characterized
for the organization

and i proactive

6 Process characterized
for projects and is

often reactive

Q pracess anpresliable;
Doarty controned and

reactive

image9.jpeg
Implementation

Testing

image10.jpeg
Build1 [pesigna |

=
s (P Sl Testing. Implementation
Development
|

Design &

Development

image11.jpeg
memeniaion

image12.jpeg
Requirement B —————— > Acceptance
Gathering Testing
i
System T > System
Analysis Testing
i — - —
Software .. . Integration
Design Testing
T | -
a’é Module Unit °¢
% Design Testing ,'$
.;‘ A’b

image13.jpeg
Requirement Gathering/\/
System Anqusﬂ

cwing\/
Tesﬁnﬂ

Waterfall Model lmplomnhﬁﬂ

Oporagions & Mnintonang:o

image14.jpeg
Data Flow Diagram Data Dictionary
B ——
Data Data Data
Flow Structure Elements
ot Floy Description
Form
O XXX XX
Eaenl
Data Data Data
. Store Structure Elements
Data Store Description
Form
XXX XXX XX

I

image15.jpeg
|

Request for
foor visit

Press elevator button
bution iluminated

from elevator

Elovator movg

n desied

Floor buton pressed recton

Tumination
Done
e Tmination
anectiom | Roachedat
oo Gestnaton

|

image16.jpeg
Alternate

Objective Evaluation

Identi

Review

Next Phase
Planning

Product
Development

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.png

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.png

image41.png

image42.png

image43.png

image44.png
Conel
i
disploy

Contel
o

Usercommands Disply
and dola infomaton

Sofatome

Horm
ohware

3 Tolephans Telaphane
Sensor o Telop
el rumbor fone: fine

image45.jpeg
Fault classification (HP)

ORIGIN: WHERE?
Speification’ || pegign Code | FPVironment!| | oo mentation || Other
requirement upport
S T— i
= | Requirements | | HWinterface | | (ter-Process Logic Test HW
E spm:; ions. | | SWinterace mmunications| | comoutation TestSW
g User interface | | D2@ 9€iton | | paia hangiing || integration SW
| Functionality Functional | | Module design Module Development
description . "°9‘i interface/ tools
escription | |implementation
\\ Errorchecking || gionrds J
fangard)

Missing _Unclear

Wrong _Changed _Better way

image46.jpeg
BLACK BOX TESTING

Executable Output
Program

image47.jpeg

image48.png

image49.jpeg
Integrated CASE
o —eee—

Upper CASE Lower CASE

——

<

|

Design

Maintenance

Implementation

image50.jpeg
Integrated CASE
o — eeee—

Upper CASE Lower CASE

—— — e

<

Maintenance

Design
Implementation

image51.jpeg
Program
documentation

Modularised Original data
program

Data
reengineering

Original
program

Reverse
engincering

Program
modularisation

Structured
program

Source code
translation

Program
structure
improvement

Reengineered
data

image52.jpeg
Integrated CASE
o —eeee—

Cgoq CASE Lower CASE
r——e

=
ms

2
§

Maintenance

Implementation

image53.jpeg
1)Environment architecture - It encompasses appropriate hardware
and systems software. It consider the human work pattems that are
applied during the software engineering process

2) Portability senices - It provides a bridge between CASE tools
and their integration framework and the emironment architecture

3)integration framework It is a callection of specialized programs
that enables individual CASE tools to communicate vith one

another, to create a project database, and to exhibit the same look
and feel to the end-user (the software engineer)

4)CASE Tools - Portability senices allow CASE tools and their
integration framework to migrate across diferent hardware platforms
and operating systems without significant adaptive maintenance

image1.png
CMR

‘GROUP OF INSTITUTIONS

EXPLORE TO INVENT

image2.jpeg
2. Identify Stakeholders’
win conditions

1. Identify next-level

Stakeholders 3. - Reconcile win conditions.

- Establish next level objectives,
constraints, alternatives

7 Review, commitmen 4 Evaluate product and

process alternatives.

6 Validate product, Resolve Risks

and process
definitions

5. Define next level of product and
process -including partitions

Figure 1.8 WINWIN Spiral Model

