
Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

UNIT – 1

1.What is Python? Explain in detail.

Python is a high-level, interpreted, interactive and object-oriented scripting language. Python is designed to

be highly readable. It uses English keywords frequently whereas the other languages use punctuations.

It has fewer syntactical constructions than other languages.

1. Python is Interpreted − Python is processed at runtime by the interpreter. You do not need to

compile your program before executing it. This is similar to PERL and PHP.

2. Python is Interactive − You can actually sit at a Python prompt and interact with the interpreter

directly to write your programs.

3. Python is Object-Oriented − Python supports Object-Oriented style or technique of programming

that encapsulates code within objects.

4. Python is a Beginner's Language − Python is a great language for the beginner-level programmers

and supports the development of a wide range of applications from simple text processing to WWW browsers

to games.

History of Python:

Python was developed by Guido van Rossum in the late eighties and early nineties at the National Research

Institute for Mathematics and Computer Science in the Netherlands.

1. Python is derived from many other languages, including ABC, Modula-3, C, C++, Algol-68,

Smalltalk, and Unix shell and other scripting languages.

2. Python is copyrighted. Like Perl, Python source code is now available under the GNU General

Public License (GPL).

3. Python is now maintained by a core development team at the institute, although Guido van Rossum

still holds a vital role in directing its progress.

4. Python 1.0 was released in November 1994. In 2000, Python 2.0 was released. Python 2.7.11 is the

latest edition of Python 2.

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

5. Meanwhile, Python 3.0 was released in 2008. Python 3 is not backward compatible with Python 2.

The emphasis in Python 3 had been on the removal of duplicate programming constructs and modules so

that "There should be one -- and preferably only one -- obvious way to do it." Python 3.5.1 is the latest

version of Python 3.

Python Features:

1. Easy-to-learn − Python has few keywords, simple structure, and a clearly defined syntax. This

allows a student to pick up the language quickly.

2. Easy-to-read − Python code is more clearly defined and visible to the eyes.

3. Easy-to-maintain − Python's source code is fairly easy-to-maintain.

4. A broad standard library − Python's bulk of the library is very portable and cross- platform

compatible on UNIX, Windows, and Macintosh.

5. Interactive Mode − Python has support for an interactive mode which allows interactive testing and

debugging of snippets of code.

6. Portable − Python can run on a wide variety of hardware platforms and has the same interface on all

platforms.

7. Extendable − You can add low-level modules to the Python interpreter. These modules enable

programmers to add to or customize their tools to be more efficient.

8. Databases − Python provides interfaces to all major commercial databases.

9. GUI Programming − Python supports GUI applications that can be created and ported to many

system calls, libraries and windows systems, such as Windows MFC, Macintosh, and the X Window

system of Unix.

10. Scalable − Python provides a better structure and support for large programs than shell scripting.

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

2. Explain about the type of operators used in Python?

Operators:

 O p e r a t o r s are the constructs which can manipulate the value of operands.

 C o n s i d e r the expression 4 + 5 = 9. Here, 4 and 5 are called operands and + is called operator.

Types of Operator:

Python language supports the following types of operators.

1 Arithmetic Operators

2 Comparison (Relational) Operators

3 Assignment Operators

4 Logical Operators

5 Bitwise Operators

6 Membership Operators

7 Identity Operators

 Python Arithmetic Operators:

Assume variable a holds 10 and variable b holds 20, then –

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

Python Comparison Operators:

These operators compare the values on either sides of them and decide the relation among them. They

are also called Relational operators.

Operator

Description

Example

==

If the values of two operands are equal, then the condition becomes true.

(a == b) is not

true.

Operator

Description

Example

+ Addition

Adds values on either side of the operator.

a + b =

30

- Subtraction

Subtracts right hand operand from left hand operand.

a – b = -

10

* Multiplication

Multiplies values on either side of the operator

a * b =

200

/ Division

Divides left hand operand by right hand operand

b / a = 2

% Modulus

Divides left hand operand by right hand operand and returns

remainder

b % a =

0

** Exponent

Performs exponential (power) calculation on operators

a**b =10 to

the power 20

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

Operator

Description

Example

& Binary AND

Operator copies a bit to the result if it exists in

both operands

(a & b)

(means

0000 1100)

| Binary OR

It copies a bit if it exists in either operand.

(a | b) = 61

(means

0011 1101)

^ Binary XOR

It copies the bit if it is set in one operand but not

both.

(a ^ b) = 49

(means

0011 0001)

~ Binary Ones

Complement

It is unary and has the effect of 'flipping' bits.

(~a) = -61

(means

1100 0011

in 2's

complement

form due to

!=

If values of two operands are not equal, then condition becomes true.

(a != b)

is true.

<>

If values of two operands are not equal, then condition becomes true.

(a <> b) is true.

This is similar to

!=

operator.

>

If the value of left operand is greater than the value of right operand, then

condition becomes true.

(a > b) is not

true.

<

If the value of left operand is less than the value of right operand, then

condition becomes true.

(a < b) is true.

>=

If the value of left operand is greater than or equal to the value of right

operand, then condition becomes true.

(a >= b) is not

true.

<=

If the value of left operand is less than or equal to the value of right

operand, then condition becomes true.

(a <= b)

is true.

Python Bitwise Operators:

There are following Bitwise operators supported by Python language

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

Python Logical Operators:

There are following logical operators supported by Python language. Assume variable a holds 10 and

variable b holds 20 then

Used to reverse the logical state of its operand.

Python Membership Operators:

Python‘s membership operators test for membership in a sequence, such as strings, lists, or tuples. There

are two membership operators as explained below –

Operator

Description

Example

and Logical

AND

If both the operands are true then condition becomes true.

(a and b)

is true.

or Logical OR

If any of the two operands are non-zero then condition

becomes true.

(a or b)

is true.

not Logical

NOT

Used to reverse the logical state of its operand.

Not(a and b)

is false.

Operator

Description

Example

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

Python Identity Operators:

Identity operators compare the memory locations of two objects. There are two Identity operators

explained below –

In

Evaluates to true if it finds a variable in the specified

sequence and false otherwise.

x in y, here in results in a 1 if x

is a member of sequence y.

not in

Evaluates to true if it does not finds a variable in the

specified sequence and false otherwise.

x not in y, here not in results in a

1 if x is not a member of

sequence y.

Operator

Description

Example

is

Evaluates to true if the variables on either side of the operator

point to the same object and false otherwise.

x is y,

here is results in 1 if id(x)

equals id(y).

is not

Evaluates to false if the variables on either side of the operator

point to the same object and true otherwise.

x is not y, here is

not results in

1 if id(x) is not equal to

id(y).

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

UNIT II

1.Demonstrate usage of exceptions in Python?

Exception:

Even if a statement or expression is syntactically correct, it may cause an error when an attempt is made to

execute it. Errors detected during execution are called exceptions and are not unconditionally fatal: you will

soon learn how to handle them in Python programs. Most exceptions are not handled by programs, however,

and result in error messages as shown here:

>>>

>>> 10 * (1/0)

Traceback (most recent call last): File "<stdin>", line 1, in <module> ZeroDivisionError: division by zero

>>> 4 + spam*3

Traceback (most recent call last): File "<stdin>", line 1, in <module> NameError: name 'spam' is not defined

>>> '2' + 2

Traceback (most recent call last): File "<stdin>", line 1, in <module>

TypeError: Can't convert 'int' object to str implicitly

The last line of the error message indicates what happened. Exceptions come in different types, and the type

is printed as part of the message: the types in the example are ZeroDivisionError, NameError and TypeError.

The string printed as the exception type is the name of the built-in exception that occurred. This is true for

all built-in exceptions but need not be true for user- defined exceptions (although it is a useful convention).

Standard exception names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what caused it.

The preceding part of the error message shows the context where the exception happened, in the form of a

stack traceback. In general, it contains a stack traceback listing source lines; however, it will not display

lines read from standard input.

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

Built-in Exceptions lists:

Handling Exceptions:

It is possible to write programs that handle selected exceptions. Look at the following example,which asks

the user for input until a valid integer has been entered but allows the user to interrupt the program (using

Control-C or whatever the operating system supports); note that a user- generated interruption is signaled by

raising the KeyboardInterruptException.

If an exception occurs which does not match the exception named in the except clause, it is passed on

to outer try statements; if no handler is found, it is an unhandled exception and execution stops with a

message as shown above.

A try statement may have more than one except clause, to specify handlers for different exceptions. At most

one handler will be executed. Handlers only handle exceptions that occur in the corresponding try clause,

not in other handlers of the same try statement. An except clause may name multiple exceptions as a

parenthesized tuple.

2.Explain in detail about Packages in Python?

A package is a hierarchical file directory structure that defines a single Python application environment that

consists of modules and sub packages. Packages were added to Python 1.5 to aid with a variety of problems

including:

Adding hierarchical organization to flat namespace Allowing developers to group-related modules

Allowing distributors to ship directories vs. bunch of files Helping resolve conflicting module names

Along with classes and modules, packages use the familiar attribute/dotted attribute notation to access their

elements. Importing modules within packages use the standard import and from-import statements.

Using from-import with Packages

Packages also support the from-import all statement:

However, such a statement is too operating system filesystem-dependent for Python to

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

make the determination which files to import. Thus the all variable in

 init .py is required. This variable contains all the module names that should be imported when the above

statement is invoked if there is such a thing. It consists of a list of module names as strings.

3.Give a short note on Python built in functions?

File Built-in Function [open()]

As the key to opening file doors, the open() built-in function provides a general interface to initiate the file

input/output (I/O) process. open() returns a file object on a successful opening of the file or else results in an

error situation. When a failure occurs, Python generates or raises an IOError exception—we will cover errors

and exceptions in the next chapter. The basic syntax of the open() built-in function is:

file_object = open(file_name, access_mode='r', buffering=-1)

The file_name is a string containing the name of the file to open. It can be a relative or absolute/full pathname.

The access_mode optional variable is also a string, consisting of a set of flags indicating which mode to open

the file with. Generally, files are opened with the modes "r," "w," or "a," representing read, write, and append,

respectively.

Any file opened with mode "r" must exist. Any file opened with "w" will be truncated first if it exists, and

then the file is (re)created. Any file opened with "a" will be opened for write. If the file exists, the initial

position for file (write) access is set to the end-of- file. If the file does not exist, it will be created, making it

the same as if you opened the file in "w" mode. If you are a C programmer, these are the same file open

modes used for the C library function fopen().

There are other modes supported by fopen() that will work with Python's open(). These include the "+" for

read-write access and "b" for binary access. One note regarding the binary flag: "b" is antiquated on all Unix

systems which are POSIX-compliant (including Linux) because they treat all files as "binary" files, including

text files. Here is an entry from the Linux manual page for fopen(), which is from where the Python open()

function is derived:

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

The mode string can also include the letter "b" either as a last character or as a character between the

characters in any of the two-character strings described above. This is strictly for compatibility with ANSI

C3.159-1989 ("ANSI C") and has no effect; the "b" is ignored on all POSIX conforming systems, including

Linux. (Other systems may treat text files and binary files differently, and adding the "b" may be a good idea

if you do I/O to a binary file and expect that your program may be ported to non-Unix environments.)

You will find a complete list of file access modes, including the use of "b" if you choose to use it,If

access_mode is not given, it defaults automatically to "r."

The other optional argument, buffering, is used to indicate the type of buffering that should be performed

when accessing the file. A value of 0 means no buffering should occur, a value of 1 signals line buffering,

and any value greater than 1 indicates buffered I/O with the given value as the buffer size. The lack of or a

negative value indicates that the system default buffering scheme should be used, which is line buffering for

any teletype or tty-like device and normal buffering for everything else. Under normal circumstances, a

buffering value is not given, thus using the system default.

 Access Modes for File Objects

File Mode Operation

r open for read

w open for write (truncate if necessary)

a open for write (start at EOF, create if necessary)

r+ open for read and write

w+ open for read and write (see "w" above)

a+ open for read and write (see "a" above)

rb open for binary read

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

Wb open for binary write (see "w" above)

Ab open for binary append (see "a" above)

rb+ open for binary read and write (see "r+" above)

wb+ open for binary read and write (see "w+" above)

ab+ open for binary read and write (see "a+" above)

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

UNIT III

1.Give a short note on Regular Expressions(Res)?

Regular Expressions (REs) provide such an infrastructure for advanced text pattern matching,

extraction, and/or search-and-replace functionality. REs are simply strings which use special symbols

and characters to indicate pattern repetition or to represent multiple characters so that they can "match"

a set of strings with similar characteristics described by the pattern.

Python supports REs through the standard library re module. In this introductory subsection, we will

give you a brief and concise introduction. Due to its brevity, only the most common aspects of REs

used in every day Python programming will be covered. Your experience, will of course, vary. We

highly recommend reading any of the official supporting documentation as well as external texts on

this interesting subject. You will never look at strings the same way again!

Let us look at the most basic of regular expressions now to show you that although REs are sometimes

considered an "advanced topic," they can also be rather simplistic. Using the standard alphabet for

general text, we present some simple REs and the strings which their patterns describe. The following

regular expressions are the most basic, "true vanilla," as it were. They simply consist of a string pattern

which matches only one string, the string defined by the regular expression. We now present the REs

followed by the strings which match them:

RE Pattern String(s) Matched

Foo foo

Python Python

abc123 abc123

The first regular expression pattern from the above chart is "foo." This pattern has no special symbols

to match any other symbol other than those described, so the only string which matches this pattern

is the string "foo." The same thing applies to "Python" and "abc123." The power of regular

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

expressions comes in when special characters are used to define character sets, subgroup matching,

and pattern repetition. It is these special symbols that allow a RE to match a set of strings rather than

a single one.

Special Symbols and Characters for REs

We will now introduce the most popular of the metacharacters, special characters and symbols, which

give regular expressions their power and flexibility. You will find the most common of these symbols

and characters.

Common Regular Expression Symbols and Special Characters

Notation Description Example RE

Symbols

re_string match literal string value re_string foo

re1|re2 match literal string value re1 or re2 foo|bar

. match any character (except NEWLINE) ::.+::

^ match start of string ^Dear

$ match end of string /bin/\w*sh$

* match 0 or more occurrences of preceding RE [A-Za-z]\w*

+ match 1 or more occurrences of preceding RE \d+\.|\.\d+

? match 0 or 1 occurrence(s) of preceding RE goo?

{N} match N occurrences of preceding RE \d{3}

{M,N} match from M to N occurrences of preceding RE \d{5,9}

[…] match any single character from character class [aeiou]

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

[..x–y..] match any single character in the range from x

to y

[0–9], [A-Za-z]

[^…] do not match any character from character class,

including any ranges, if present

[^aeiou], [^A- Za-

z0–9_]

(*|+|?|{})? apply non-greedy versions of above

occurrence/repetition symbols (*, +, ?, {})

.*?\w

(…) match enclosed RE and save as subgroup (\d{3})?,

f(oo|u)bar

Special

Characters

\d match any decimal digit, same as [0–9] (\D is inverse

of \d: do not match any numeric digit)

data\d+.txt

\w match any alphanumeric character, same as [A- Za-

z0-9_] (\W is inverse of \w)

[A-Za-z_]\w+

\s match any whitespace character, same as

[\n\t\r\v\f] (\S is inverse of \s)

of\sthe

\b match any word boundary (\B is inverse of \b) \bThe\b

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

2.Explain threads with Global interpreter lock?

Global Interpreter Lock

As an example, for any Python I/O-oriented

Execution by Python code is controlled by the Python Virtual Machine (a.k.a. the interpreter main

loop), and Python was designed in such a way that only one thread of control may be executing in

this main loop, similar to how multiple processes in a system share a single CPU. Many programs

may be in memory, but only one is live on the CPU at any given moment. Likewise, although multiple

threads may be "running" within the Python interpreter, only one thread is being executed by the

interpreter at any given time.

Access to the Python Virtual Machine is controlled by a global interpreter lock (GIL). This lock is

what ensures that exactly one thread is running. The Python Virtual Machine executes in the following

manner in an MT environment:

Set the GIL,

Switch in a thread to run,

Execute for a specified number of bytecode instructions, Put the thread back to sleep (switch out thread),

Unlock the GIL, and,

Do it all over again (rinse, lather, repeat).

 When a call is made to external code, i.e., any C/C++ extension built-in function, the GIL will be locked

until it has completed (since there are no Python bytecodes to count as the interval). Extension programmers do

have the ability to unlock the GIL however, so you being the Python developer shouldn't have to worry about

your Python code locking up in those situations.

Routines (which invoke built-in operating system C code), the GIL is released before the I/O call is made,

allowing other threads to run while the I/O is being performed. Code which doesn't have much I/O will tend to

keep the processor (and GIL) to the full interval a thread is allowed before it yields. In other words, I/O-bound

Python programs stand a much better chance of being able to take advantage of a multithreaded environment

than CPU-bound code.

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

Those of you interested in the source code, the interpreter main loop, and the GIL can take a look at eval_code2()

routine in the Python/ceval.c file, which is the Python Virtual Machine.

Exiting Threads

When a thread completes execution of the function they were created for, they exit. Threads may also quit by

calling an exit function such as thread.exit(), or any of the standard ways of exiting a Python process, i.e.,

sys.exit() or raising the SystemExit exception.

There are a variety of ways of managing thread termination. In most systems, when the main thread exits, all

other threads die without cleanup, but for some systems, they live on. Check your operating system threaded

programming documentation regarding their behavior in such occasions.

Main threads should always be good managers, though, and perform the task of knowing what needs to be

executed by individual threads, what data or arguments each of the spawned threads requires, when they

complete execution, and what results they provide. In so doing, those main threads can collate the individual

results into a final conclusion.

Accessing Threads From Python

Python supports multithreaded programming, depending on the operating system that it is running on. It is

supported on most versions of Unix, including Solaris and Linux, and

Windows. Threads are not currently available on the Macintosh platform. Python uses POSIX-compliant

threads, or "pthreads," as they commonly known.

By default, threads are not enabled when building Python from source, but are available for Windows platforms

automatically from the installer. To tell whether threads are installed, simply attempt to import the thread

module from the interactive interpreter. No errors occur when threads are available:

>>> import thread

>>>

If your Python interpreter was not compiled with threads enabled, the module import fails:

>>> import thread Traceback (innermost last):

File "<stdin>", line 1, in ?

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

ImportError: No module named thread

In such cases, you may have to recompile your Python interpreter to get access to threads. This usually

involves invoking the configure script with the "--with-thread" option. Check the README file for your

distribution for specific instructions on how to compile Python with threads for your system.

Due to the brevity of this chapter, we will give you only a quick introduction to threads and MT

programming in Python. We refer you to the official documentation to get the full coverage of all the

aspects of the threading support which Python has to offer. Also, we recommended accessing any general

operating system textbook for more details on processes, interprocess communication, multi-threaded

programming, and thread/process synchronization. (Some of these texts are listed in the appendix.)

Life Without Threads

For our first set of examples, we are going to use the time.sleep() function to show how threads work.

time.sleep() takes a floating point argument and "sleeps" for the given number of seconds, meaning that

execution is temporarily halted for the amount of time specified.

Let us create two "time loops," one which sleeps for 4 seconds and one that sleeps for 2 seconds, loop0()

and loop1(), respectively. (We use the names "loop0" and "loop1" as a hint that we will eventually have

a sequence of loops.) If we were to execute loop0() and loop1() sequentially in a one-process or single-

threaded program,the total execution time would be at least 6 seconds.

may not be a 1-second gap between the starting of loop0() and loop1(), and other execution overhead

which may cause the overall time to be bumped to 7 seconds.

Loops Executed by a Single Thread

Executes two loops consecutively in a single-threaded program. One loop must complete before the other

can begin. The total elapsed time is the sum of times taken by each loop.

<$nopage>

001 1 #!/usr/bin/env python

002 2

Python Programming Step Material

Dept of IT CS751PC-PythonProgramming

003 3 from time import sleep, time, ctime 004 4

5 def loop0():

6 print 'start loop 0 at:', ctime(time())

7 sleep(4)

8 print 'loop 0 done at:', ctime(time())

009 9

10 def loop1():

11 print 'start loop 1 at:', ctime(time())

12 sleep(2)

13 print 'loop 1 done at:', ctime(time())

014 14

15 def main():

16 print 'starting…'

017 17 loop0()

018 18 loop1()

019 19 print 'all DONE at:', ctime(time()) 020 20

21 if name

22 main()

<$nopage>

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

3.Define threading module of Python?

Python provides several modules to support MT programming, including the thread, threading, and

Queue modules. The thread and threading modules allow the programmer to create and manage

threads. The thread module provides the basic thread and locking support, while threading provides

high-level full-featured thread management. The Queue module allows the user to create a queue

data structure which can be shared across multiple threads. We will take a look at these modules

individually, present a good number of examples, and a couple of intermediate-sized applications.

thread Module

Let's take a look at what the thread module has to offer. In addition to being able to spawn threads,

the threadmodule also provides a basic synchronization data structure called a lock object (a.k.a.

primitive lock, simple lock, mutual exclusion lock, mutex, binary semaphore). As we mentioned

earlier, such synchronization primitives go hand-in- hand with thread management. A list of the

more commonly-used thread functions and

LockType lock object methods:

thread Module and Lock Objects

Function/Method Description

thread Module Functions

start_new_thread(function, args,

kwargs=None)

spawns a new thread and execute

function with the given args and optional

kwargs

allocate_lock() allocates LockType lock object

exit() instructs a thread to exit

LockType Lock Object Methods

acquire(wait=None) attempts to acquire lock object

locked() returns 1 if lock acquired, 0 otherwise

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

The key function of the thread module is start_new_thread(). Its syntax is exactly that of the apply()

built-in function, taking a function along with arguments and optional keyword arguments. The

difference is that instead of the main thread executing the function, a new thread is spawned to

invoke the function.

Using the thread Module

The same loops from onethr.py are executed, but this time using the simple multithreaded

mechanism provided by the thread module. The two loops are executed concurrently (with the

shorter one finishing first, obviously), and the total elapsed time is only as long as the slowest

thread rather than the total time for each separately.

<$nopage>

001 1 #!/usr/bin/env python

002 2

003 3 import thread

004 4 from time import sleep, time, ctime

005 5

006 6 def loop0():

007 7 print 'start loop 0 at:', ctime(time())

008 8 sleep(4)

009 9 print 'loop 0 done at:', ctime(time())

010 10

011 11 def loop1():

012 12 print 'start loop 1 at:', ctime(time())

release() releases lock

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

013 13 sleep(2)

014 14 print 'loop 1 done at:', ctime(time())

015 15

016 16 def main():

017 17 print 'starting threads…'

018 18 thread.start_new_thread(loop0, ())

019 19 thread.start_new_thread(loop1, ())

020 20 sleep(6)

021 21 print 'all DONE at:', ctime(time))

022 22

023 23 if name == ' main ':

024 24 main()

025 <$nopage>

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

UNIT IV

1.Describe GUI programming in detail.

Graphical User Interfaces:

In graphical user interface we are going to discuss about

 Behavior of terminal based programs and GUI-based programs

 Coding simple GUI-based programs

 Other useful GUI resources

1. Behavior of terminal based programs and GUI-based programs:

Terminal-Based Version:

The terminal-based version of the bouncy program displays a greeting and then a menu of

command options. The user is prompted for a command number and then enters a number from

the keyboard. The program responds by either terminating execution, prompting for the

information for a bouncing ball, or printing a message indicating an unrecognized command. After

the program processes a command, it displays the menu again, and the same process starts over.

This terminal-based user interface has several obvious effects on its users:

 T h e user is constrained to reply to a definite sequence of prompts for inputs. Once an input is

entered, there is no way to back up and change it.

 T o obtain results for a different set of input data, the user must wait for the command menu to

be displayed again. At that point, the same command and all of the other inputs must be re-entered.

 T h e user can enter an unrecognized command.

Each of these effects poses a problem for users that can be solved by converting the interface to a

.

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

2. Coding simple GUI-based programs:

 T h e r e are many libraries and toolkits of GUI components available to the Python

programmer, but in this chapter we use just two: tkinter and tkinter.messagebox.

 B o t h are standard modules that come with any Python installation.

 t k i n t e r includes classes for windows and numerous types of window objects.

 t k i n t e r .messagebox includes functions for several standard popup dialog boxes.

 W e start with some short demo programs that illustrate each type of GUI component

3. Other useful GUI resources:

Other useful GUI resources are

1. Colors

2. Text Attributes

3. Sizing and Justifying an Entry

4. Sizing the Main Window

5. Grid Attributes

6. Using Nested Frames to Organize Components

7. Multi-Line Text Widgets

8. Scrolling List Boxes

9. Mouse Events

10. Keyboard Events

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

2.Explain about Tkinter module?

Tkinter is the standard GUI library for Python. Python when combined with Tkinter

provides a fast and easy way to create GUI applications. Tkinter provides a powerful object-

oriented interface to the Tk GUI toolkit.

Creating a GUI application using Tkinter is an easy task. All you need to do is perform the

following steps −

 Import the Tkinter module.

 Create the GUI application main window

 Add one or more of the above-mentioned widgets to the GUI application.

 Enter the main event loop to take action against each event triggered by the user.

Example

python

import Tkinter

top = Tkinter.Tk()

Code to add widgets will go here...

top.mainloop()

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

This would create a following window −

3.Write a short note on CGI in Python?

The Web was initially developed to be a global online repository or archive of (mostly educational

and research-oriented) documents. Such pieces of information generally come in the form of static

text and usually in HTML (HyperText Markup Language). [Many documents also exist in plain

text, Adobe Portable Document Format (PDF), or Extensible Markup Language (XML) format, a

generalized markup language.]

HTML is not as much of a language as it is a text formatter, indicating changes in font types, sizes,

and styles. The main feature of HTML is in its hypertext capability, document text that is in one

way or another highlighted to point to another document in a related context to the original. Such

a document can be accessed by a mouse click or other user selection mechanism. These (static)

HTML documents live on the Web server and are sent to clients when and if requested.

As the Internet and Web services evolved, there grew a need to process user input. Online retailers

needed to be able to take individual orders, and online banks and search engine portals needed to

create accounts for individual users. Thus fill-out forms were invented, and became the only way

a Web site can get specific information from users (until Java applets came along).This, in turn,

required the HTML now be generated on the fly, for each client submitting user-specific data.

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

Now Web servers are only really good at one thing, getting a user request for a file and returning

that file (i.e., an HTML file) to the client. They do not have the "brains" to be able to deal with

user-specific data such as those which come from fields. Not being their responsibility, Web

servers farm out such requests to external applications which create the dynamically-generated

HTML that is returned to the client.

The entire process begins when the Web server receives a client request (i.e., GET or POST) and

calls the appropriate application. It then waits for the resulting HTML— meanwhile, the client also

waits. Once the application has completed, it passes the dynamically-generated HTML back to the

server, who then (finally) forwards it back to the user. This process of the server receiving a form,

contacting an external application, receiving and returning the newly-generated HTML takes place

through what is called the Web server's Common Gateway Interface (CGI). An overview of how

CGI works is illustrated in which shows you the execution and data flow, step-by-step from when

a user submits a form until the resulting Web page is returned.

CGI Applications

A CGI application is slightly different from a typical program. The primary differences are in the

input, output, and user interaction aspects of a computer program.

When a CGI script starts, it will have the additional functionality of retrieving the user- supplied

data, the input for the program comes from the data via the Web client, not a user on the server

machine nor a disk file.

The output differs in that any data sent to standard output will be sent back to the connected Web

client rather than to the screen, GUI window, or disk file. The data that is sent back must be a set

of valid headers followed by HTML. If it is not and the Web client is a browser, an error

(specifically, an Internal Server Error) will occur because Web clients such as browsers understand

only valid HTTP data (i.e., MIME headers and HTML).

Finally, as you can probably guess, there is no user interaction with the script. All communication

occurs among the Web client (on behalf of a user), the Web server, and the CGI application.

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

UNIT V

1.Explain database API in Python?

The Python standard for database interfaces is the Python DB-API. Most Python database

interfaces adhere to this standard.

You can choose the right database for your application. Python Database API supports a wide

range of database servers such as −

GadFly

mSQL

MySQL

PostgreSQL

Microsoft SQL Server 2000

Informix

Interbase

Oracle

Sybase

Here is the list of available Python database interfaces: Python Database Interfaces and APIs. You

must download a separate DB API module for each database you need to access. For example, if

you need to access an Oracle database as well as a MySQL database, you must download both the

Oracle and the MySQL database modules.

The DB API provides a minimal standard for working with databases using Python structures and

syntax wherever possible. This API includes the following −

Importing the API module.

Acquiring a connection with the database.

Issuing SQL statements and stored procedures.

http://wiki.python.org/moin/DatabaseInterfaces

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

Closing the connection

We would learn all the concepts using MySQL, so let us talk about MySQLdb module.

2.What is MySQLdb?

MySQLdb is an interface for connecting to a MySQL database server from Python. It implements

the Python Database API v2.0 and is built on top of the MySQL C API.

How do I Install MySQLdb?

Before proceeding, you make sure you have MySQLdb installed on your machine. Just type the

following in your Python script and execute it −

#!/usr/bin/python

import MySQLdb

If it produces the following result, then it means MySQLdb module is not installed −

Traceback (most recent call last):

 File "test.py", line 3, in <module>

 import MySQLdb

ImportError: No module named MySQLdb

To install MySQLdb module, use the following command −

For Ubuntu, use the following command -

$ sudo apt-get install python-pip python-dev libmysqlclient-dev

For Fedora, use the following command -

$ sudo dnf install python python-devel mysql-devel redhat-rpm-config gcc

For Python command prompt, use the following command -

pip install MySQL-python

Note − Make sure you have root privilege to install above module.

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

Database Connection

Before connecting to a MySQL database, make sure of the followings −

You have created a database TESTDB.

You have created a table EMPLOYEE in TESTDB.

This table has fields FIRST_NAME, LAST_NAME, AGE, SEX and INCOME.

User ID "testuser" and password "test123" are set to access TESTDB.

Python module MySQLdb is installed properly on your machine.

You have gone through MySQL tutorial to understand MySQL Basics.

Example

Following is the example of connecting with MySQL database "TESTDB"

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

execute SQL query using execute() method.

cursor.execute("SELECT VERSION()")

Fetch a single row using fetchone() method.

data = cursor.fetchone()

print "Database version : %s " % data

disconnect from server

db.close()

https://www.tutorialspoint.com/mysql/index.htm

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

While running this script, it is producing the following result in my Linux machine.

Database version : 5.0.45

If a connection is established with the datasource, then a Connection Object is returned and saved

into db for further use, otherwise db is set to None. Next, db object is used to create a cursor object,

which in turn is used to execute SQL queries. Finally, before coming out, it ensures that database

connection is closed and resources are released.

3.List out Database operations?

Creating Database Table

Once a database connection is established, we are ready to create tables or records into the database

tables using execute method of the created cursor.

Example

Let us create Database table EMPLOYEE −

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Drop table if it already exist using execute() method.

cursor.execute("DROP TABLE IF EXISTS EMPLOYEE")

Create table as per requirement

sql = """CREATE TABLE EMPLOYEE (

 FIRST_NAME CHAR(20) NOT NULL,

 LAST_NAME CHAR(20),

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

 AGE INT,

 SEX CHAR(1),

 INCOME FLOAT)"""

cursor.execute(sql)

disconnect from server

db.close()

INSERT Operation

It is required when you want to create your records into a database table.

Example

The following example, executes SQL INSERT statement to create a record into EMPLOYEE table

−

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = """INSERT INTO EMPLOYEE(FIRST_NAME,

 LAST_NAME, AGE, SEX, INCOME)

 VALUES ('Mac', 'Mohan', 20, 'M', 2000)"""

try: # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Above example can be written as follows to create SQL queries dynamically −

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to INSERT a record into the database.

sql = "INSERT INTO EMPLOYEE(FIRST_NAME, \

 LAST_NAME, AGE, SEX, INCOME) \

 VALUES ('%s', '%s', '%d', '%c', '%d')" % \

 ('Mac', 'Mohan', 20, 'M', 2000)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Example

Following code segment is another form of execution where you can pass parameters directly −

..................................

user_id = "test123"

password = "password"

con.execute('insert into Login values("%s", "%s")' % \

 (user_id, password))

..................................

READ Operation

READ Operation on any database means to fetch some useful information from the database.

Once our database connection is established, you are ready to make a query into this database. You

can use either fetchone() method to fetch single record or fetchall() method to fetech multiple

values from a database table.

fetchone() − It fetches the next row of a query result set. A result set is an object that is returned

when a cursor object is used to query a table.

fetchall() − It fetches all the rows in a result set. If some rows have already been extracted from

the result set, then it retrieves the remaining rows from the result set.

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

rowcount − This is a read-only attribute and returns the number of rows that were affected by an

execute() method.

Example

The following procedure queries all the records from EMPLOYEE table having salary more than

1000 −

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

sql = "SELECT * FROM EMPLOYEE \

 WHERE INCOME > '%d'" % (1000)

try:

 # Execute the SQL command

 cursor.execute(sql)

 # Fetch all the rows in a list of lists.

 results = cursor.fetchall()

 for row in results:

 fname = row[0]

 lname = row[1]

 age = row[2]

 sex = row[3]

 income = row[4]

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

 # Now print fetched result

 print "fname=%s,lname=%s,age=%d,sex=%s,income=%d" % \

 (fname, lname, age, sex, income)

except:

 print "Error: unable to fecth data"

disconnect from server

db.close()

This will produce the following result −

fname=Mac, lname=Mohan, age=20, sex=M, income=2000

UPDATE Operation

UPDATE Operation on any database means to update one or more records, which are already

available in the database.

The following procedure updates all the records having SEX as 'M'. Here, we increase AGE of all

the males by one year.

Example

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to UPDATE required records

sql = "UPDATE EMPLOYEE SET AGE = AGE + 1

 WHERE SEX = '%c'" % ('M')

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

try: # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

DELETE Operation

DELETE operation is required when you want to delete some records from your database.

Following is the procedure to delete all the records from EMPLOYEE where AGE is more than

20 −

Example

#!/usr/bin/python

import MySQLdb

Open database connection

db = MySQLdb.connect("localhost","testuser","test123","TESTDB")

prepare a cursor object using cursor() method

cursor = db.cursor()

Prepare SQL query to DELETE required records

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)

try:

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

disconnect from server

db.close()

Performing Transactions

Transactions are a mechanism that ensures data consistency. Transactions have the following four

properties −

Atomicity − Either a transaction completes or nothing happens at all.

Consistency − A transaction must start in a consistent state and leave the system in a consistent

state.

Isolation − Intermediate results of a transaction are not visible outside the current transaction.

Durability − Once a transaction was committed, the effects are persistent, even after a system

failure.

The Python DB API 2.0 provides two methods to either commit or rollback a transaction.

Example

You already know how to implement transactions. Here is again similar example −

Prepare SQL query to DELETE required records

sql = "DELETE FROM EMPLOYEE WHERE AGE > '%d'" % (20)

try:

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

 # Execute the SQL command

 cursor.execute(sql)

 # Commit your changes in the database

 db.commit()

except:

 # Rollback in case there is any error

 db.rollback()

COMMIT Operation

Commit is the operation, which gives a green signal to database to finalize the changes, and after

this operation, no change can be reverted back.

Here is a simple example to call commit method.

db.commit()

ROLLBACK Operation

If you are not satisfied with one or more of the changes and you want to revert back those changes

completely, then use rollback() method.

Here is a simple example to call rollback() method.

db.rollback()

Disconnecting Database

To disconnect Database connection, use close() method.

db.close()

If the connection to a database is closed by the user with the close() method, any outstanding

transactions are rolled back by the DB. However, instead of depending on any of DB lower level

implementation details, your application would be better off calling commit or rollback explicitly.

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

4.Explain ORM?

An object-relational mapper (ORM) is a code library that automates the transfer of data stored in

relational databases tables into objects that are more commonly used in application code.

Why are ORMs useful?

ORMs provide a high-level abstraction upon a relational database that allows a developer to write

Python code instead of SQL to create, read, update and delete data and schemas in their database.

Developers can use the programming language they are comfortable with to work with a database

instead of writing SQL statements or stored procedures.

For example, without an ORM a developer would write the following SQL statement to retrieve

every row in the USERS table where the zip_code column is 94107:

SELECT * FROM USERS WHERE zip_code=94107;

The equivalent Django ORM query would instead look like the following Python code:

obtain everyone in the 94107 zip code and assign to users variable

users = Users.objects.filter(zip_code=94107)

The ability to write Python code instead of SQL can speed up web application development,

especially at the beginning of a project. The potential development speed boost comes from not

having to switch from Python code into writing declarative paradigm SQL statements. While some

software developers may not mind switching back and forth between languages, it's typically easier

to knock out a prototype or start a web application using a single programming language.

https://www.fullstackpython.com/databases.html
https://www.fullstackpython.com/django-orm.html

Python Programming Step Material

Dept Of IT CS721PE-Python Programming

Operator

Description

Example

==

If the values of two operands are equal, then the condition

becomes true.

(a == b)

is not

true.

!=

If values of two operands are not equal, then condition

becomes true.

(a != b)

is true.

<>

If values of two operands are not equal, then condition

becomes true.

(a <> b)

is true.

This is

similar

to !=

operator.

>

If the value of left operand is greater than the value of right

operand, then condition becomes true.

(a > b) is

not true.

<

If the value of left operand is less than the value of right

operand, then condition becomes true.

(a < b) is

true.

ORMs also make it theoretically possible to switch an application between various relational

databases. For example, a developer could use SQLite for local development and MySQL in

production. A production application could be switched from MySQL to PostgreSQL with

minimal code modifications.

The above table shows for example that SQLAlchemy can work with varying web frameworks and

database connectors. Developers can also use ORMs without a web framework, such as when

creating a data analysis tool or a batch script without a user interface.

https://www.fullstackpython.com/sqlite.html
https://www.fullstackpython.com/mysql.html
https://www.fullstackpython.com/postgresql.html

