
LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 1

UNIT-II (FILES & DIRECTORIES)

1Q) Explain about File and File Types in Linux Environment?

Files are the building blocks of any operating system. When you execute a command in UNIX, the UNIX kernel fetches

the corresponding executable file from a file system, loads its instruction text to memory, and creates a process to

execute the command on your behalf. In the course of execution, a process may read from or write to files. All these

operations involve files. Thus, the design of an operating system always begins with an efficient file management

system.

A file in a UNIX or POSIX system may be one of the following types:

 regular file
 directory file
 FIFO file
 Character device file
 Block device file

 Regular file
 A regular file may be either a text file or a binary file
 These files may be read or written to by users with the appropriate access permission
 Regular files may be created, browsed through and modified by various means such as text editors or

compilers, and they can be removed by specific system commands
 Directory file

 It is like a folder that contains other files, including sub-directory files.
 It provides a means for users to organise their files into some hierarchical structure based on file

relationship or uses.
 Ex: /bin directory contains all system executable programs, such as cat, rm, sort
 A directory may be created in UNIX by the mkdir command

o Ex: mkdir /usr/foo/xyz
 A directory may be removed via the rmdir command

o Ex: rmdir /usr/foo/xyz
 The content of directory may be displayed by the ls command

 Device file
Device or special files are used for device I/O on UNIX and Linux systems. They appear in a file system just like an
ordinary file or a directory.

On UNIX systems there are two flavours of special files for each device, character special files and block special
files. Linux systems only provide one special file for each device.

When a character special file is used for device I/O, data is transferred one character at a time. This type of access
is called raw device access.

When a block special file is used for device I/O, data is transferred in large fixed-size blocks. This type of access is
called block device access.

 FIFO file
 It is a special pipe device file which provides a temporary buffer for two or more processes to

communicate by writing data to and reading data from the buffer.
 The size of the buffer is fixed to PIPE_BUF.
 Data in the buffer is accessed in a first-in-first-out manner.
 The buffer is allocated when the first process opens the FIFO file for read or write
 The buffer is discarded when all processes close their references (stream pointers) to the FIFO file.
 Data stored in a FIFO buffer is temporary.
 A FIFO file may be created via the mkfifo command.

o The following command creates a FIFO file (if it does not exists)

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 2

mkfifo /usr/prog/fifo_pipe

o The following command creates a FIFO file (if it does not exists)
mknod /usr/prog/fifo_pipe p

 FIFO files can be removed using rm command.
 Symbolic link file

 BSD UNIX & SV4 defines a symbolic link file.
 A symbolic link file contains a path name which references another file in either local or a remote file

system.
 POSIX.1 does not support symbolic link file type
 A symbolic link may be created in UNIX via the ln command

 Ex: ln -s /usr/divya/original /usr/raj/slink

 It is possible to create a symbolic link to reference another symbolic link.
 rm, mv and chmod commands will operate only on the symbolic link arguments directly and not on the

files that they reference.

2Q) Explain the Unix File system Structure?

 Files in UNIX or POSIX systems are stored in tree-like hierarchical file system.

 The root of a file system is the root (“/”) directory.
 The leaf nodes of a file system tree are either empty directory files or other types of files.

 Absolute path name of a file consists of the names of all the directories, starting from the root.

 Ex: /usr/divya/a.out
 Relative path name may consist of the “.” and “..” characters. These are references to current and parent

directories respectively.

 Ex: ../../.login denotes .login file which may be found 2 levels up from the current directory

 A file name may not exceed NAME_MAX characters (14 bytes) and the total number of characters of a path
name may not exceed PATH_MAX (1024 bytes).

 POSIX.1 defines _POSIX_NAME_MAX and _POSIX_PATH_MAX in <limits.h> header

 File name can be any of the following character set only

A to Z a to z 0 to 9 _

 Path name of a file is called the hardlink.

 A file may be referenced by more than one path name if a user creates one or more hard links to the file
using ln command.

ln /usr/foo/path1 /usr/prog/new/n1

 If the –s option is used, then it is a symbolic (soft) link .

The following files are commonly defined in most UNIX systems

FILE Use

/etc Stores system administrative files and programs
/etc/passwd Stores all user information’s

/etc/shadow Stores user passwords
/etc/group Stores all group information
/bin Stores all the system programs like cat, rm, cp,etc.
/dev Stores all character device and block device files
/usr/include Stores all standard header files.

/usr/lib Stores standard libraries
/tmp Stores temporary files created by program

3Q) Describe the different UNIX/Linux POSIX file attributes?

The general file attributes for each file in a file system are:

1) File type - specifies what type of file it is.
2) Access permission - the file access permission for owner, group and others.

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 3

3) Hard link count - number of hard link of the file
4) Uid - the file owner user id.
5) Gid - the file group id.
6) File size - the file size in bytes.

7) Inode no - the system inode no of the file.
8) File system id - the file system id where the file is stored.
9) Last access time - the time, the file was last accessed.
10) Last modified time - the file, the file was last modified.
11) Last change time - the time, the file was last changed.

In addition to the above attributes, UNIX systems also store the major and minor device numbers for each device
file. All the above attributes are assigned by the kernel to a file when it is created. The attributes that are constant
for any file are:

 File type
 File inode number
 File system ID
 Major and minor device number

The other attributes are changed by the following UNIX commands or system calls

Unix System Attributes changed
Command Call

chmod chmod Changes access permission, last change time

chown chown Changes UID, last change time

chgrp chown Changes GID, ast change time

touch utime Changes last access time, modification time

ln link Increases hard link count

rm unlink Decreases hard link count. If the hard link count is zero, the file will be
removed from the file system

vi, emac Changes the file size, last access time, last modification time

4Q) Explain Briefly about UNIX/LINUX Kernel support for files?
 In UNIX system V, the kernel maintains a file table that has an entry of all opened files and also there is an inode table
that contains a copy of file inodes that are most recently accessed.
A process, which gets created when a command is executed will be having its own data space (data structure) wherein it
will be having file descriptor table. The file descriptor table will be having an maximum of OPEN_MAX file entries.
Whenever the process calls the open function to open a file to read or write, the kernel will resolve the pathname to the
file inode number.
The steps involved are :

1. The kernel will search the process descriptor table and look for the first unused entry. If an entry is found, that entry
will be designated to reference the file .The index of the entry will be returned to the process as the file descriptor of
the opened file.

2. The kernel will scan the file table in its kernel space to find an unused entry that can be assigned to reference the file.
If an unused entry is found the following events will occur:

 The process file descriptor table entry will be set to point to this file table entry.
 The file table entry will be set to point to the inode table entry, where the inode record of the file is stored.
 The file table entry will contain the current file pointer of the open file. This is an offset from the beginning of

the file where the next read or write will occur.
 The file table entry will contain an open mode that specifies that the file opened is for read only, write only or

read and write etc. This should be specified in open function call.
 The reference count (rc) in the file table entry is set to 1. Reference count is used to keep track of how many file

descriptors from any process are referring the entry.

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 4

 The reference count of the in-memory inode of the file is increased by 1. This count specifies how many file table
entries are pointing to that inode.

If either (1) or (2) fails, the open system call returns -1 (failure/error)

Data Structure for File Manipulation

Normally the reference count in the file table entry is 1,if we wish to increase the rc in the file table entry, this can be
done using fork,dup,dup2 system call. When a open system call is succeeded, its return value will be an integer
(filedescriptor). Whenever the process wants to read or write data from the file, it should use the file descriptor as one
of its argument.

The following events will occur whenever a process calls the close function to close the files that are opened.

1. The kernel sets the corresponding file descriptor table entry to be unused.

2. It decrements the rc in the corresponding file table entry by 1, if rc not equal to 0 go to step 6.

3. The file table entry is marked as unused.

4. The rc in the corresponding file inode table entry is decremented by 1, if rc value not equal to 0 go to step 6.

5. If the hard link count of the inode is not zero, it returns to the caller with a success status otherwise it marks the
inode table entry as unused and de-allocates all the physical dusk storage of the file.

6. It returns to the process with a 0 (success) status.

5Q) Describe the relationship between C Stream Pointers and File Descriptors?

The major difference between the stream pointer and the file descriptors are as follows:

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 5

The file descriptor associated with a stream pointer can be extracted by fileno macro, which is declared in the
<stdio.h> header.
int fileno(FILE * stream_pointer);
To convert a file descriptor to a stream pointer, we can use fdopen C library function
FILE *fdopen(int file_descriptor, char * open_mode);
The following lists some C library functions and the underlying UNIX APIs theyuse to perform their functions:

C library function UNIX system call used

fopen open

fread, fgetc, fscanf, fgets read

fwrite, fputc, fprintf, fputs write

fseek, fputc, fprintf, fputs lseek

fclose close

6Q) Explain about the Hard and Soft Links?

 A hard link is a UNIX pathname for a file. Generally most of the UNIX files will be having only one hard link.
 In order to create a hard link, we use the command ln.

Example : Consider a file /usr/ divya/old, to this we can create a hard link by
ln /usr/ divya/old /usr/ divya/new
after this we can refer the file by either /usr/ divya/old or /usr/ divya/new

 Symbolic link can be creates by the same command ln but with option –s Example: ln –s /usr/divya/old
 /usr/divya/new

 ln command differs from the cp(copy) command in that cp creates a duplicated copy of a file to another file with
a different pathname, whereas ln command creates a new directory to reference a file.

 Let’s visualize the content of a directory file after the execution of command ln.
Case 1: for hardlink file
ln /usr/divya/abc /usr/raj/xyz
The content of the directory files /usr/divya and /usr/raj are

Both /urs/divya/abc and /usr/raj/xyz refer to the same inode number 201, thus type is no new file created.
Case 2: For the same operation, if ln –s command is used then a new inode will be created.
ln –s /usr/divya/abc /usr/raj/xyz
The content of the directory files divya and raj will be

If cp command was used then the data contents will be identical and the 2 files will be separate objects in the file
system, whereas in ln –s the data will contain only the path name.

7Q) What are the Limitations of Hard Link?

Limitations of hard link:

1. User cannot create hard links for directories, unless he has super-user privileges.

2. User cannot create hard link on a file system that references files on a different file system, because inode number
is unique to a file system.

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 6

8Q) Distinguish a Hard Link with Symbolic Link?

9Q) Explain the file APIs in Unix/Linux?

Files in a UNIX and POSIX system may be any one of the following types:
 Regular file

 Directory File

 FIFO file

 Block device file

 character device file

 Symbolic link file.
There are special API’s to create these types of files. There is a set of Generic API’s that can be used to manipulate
and create more than one type of files. These API’s are:

 open
 This is used to establish a connection between a process and a file i.e. it is used to open an existing file for

data transfer function or else it may be also be used to create a new file.
 The returned value of the open system call is the file descriptor (row number of the file table), which

contains the inode information.
 The prototype of open function is

 If successful, open returns a nonnegative integer representing the open file descriptor.
 If unsuccessful, open returns –1.
 The first argument is the name of the file to be created or opened. This may be an absolute pathname or

relative pathname.
 If the given pathname is symbolic link, the open function will resolve the symbolic link reference to a non

symbolic link file to which it refers.
 The second argument is access modes, which is an integer value that specifies how actually the file should

be accessed by the calling process.
 Generally the access modes are specified in <fcntl.h>. Various access modes are:

O_RDONLY - open for reading file only
O_WRONLY - open for writing file only
O_RDWR - opens for reading and writing
file.

There are other access modes, which are termed as access modifier flags, and one or more of the following can be

#include<sys/types.h>

#include<sys/fcntl.h>

int open(const char *pathname, int accessmode, mode_t permission);

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 7

specified by bitwise-ORing them with one of the above access mode flags to alter the access mechanism of the file.

O_APPEND - Append data to the end of file.

O_CREAT - Create the file if it doesn’t exist
O_EXCL - Generate an error if O_CREAT is also specified and the file already exists.
O_TRUNC - If file exists discard the file content and set the file size to zero bytes.
O_NONBLOCK - Specify subsequent read or write on the file should be non-blocking.
O_NOCTTY - Specify not to use terminal device file as the calling process control terminal.

 To illustrate the use of the above flags, the following example statement opens a file called /usr/divya/usp for
read and write in append mode:

int fd=open(“/usr/divya/usp”,O_RDWR |

O_APPEND,0);

 If the file is opened in read only, then no other modifier flags can be used.
 If a file is opened in write only or read write, then we are allowed to use any modifier flags along with them.
 The third argument is used only when a new file is being created. The symbolic names for file permission are

given in the table in the previous page.

 creat
 This system call is used to create new regular files.
 The prototype of creat is

 Returns: file descriptor opened for write-only if OK, -1 on error.
 The first argument pathname specifies name of the file to be created.
 The second argument mode_t, specifies permission of a file to be accessed by owner group and others.
 The creat function can be implemented using open function as:

#define creat(path_name, mode)
open (pathname, O_WRONLY | O_CREAT | O_TRUNC, mode);

#include <sys/types.h>

#include<unistd.h>

int creat(const char *pathname, mode_t mode);

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 8

 read
 The read function fetches a fixed size of block of data from a file referenced by a given file descriptor.
 The prototype of read function is:

#include<sys/types.h>

#include<unistd.h>

size_t read(int fdesc, void *buf, size_t nbyte);

 If successful, read returns the number of bytes actually read.
 If unsuccessful, read returns –1.
 The first argument is an integer, fdesc that refers to an opened file.
 The second argument, buf is the address of a buffer holding any data read.
 The third argument specifies how many bytes of data are to be read from the file.
 The size_t data type is defined in the <sys/types.h> header and should be the same as unsigned int.
 There are several cases in which the number of bytes actually read is less than the amount requested:

o When reading from a regular file, if the end of file is reached before the requested number of bytes has
been read. For example, if 30 bytes remain until the end of file and we try to read 100 bytes, read
returns 30. The next time we call read, it will return 0 (end of file).

o When reading from a terminal device. Normally, up to one line is read at a time.
o When reading from a network. Buffering within the network may cause less than the requested amount

to be returned.
o When reading from a pipe or FIFO. If the pipe contains fewer bytes than requested, read will return only

what is available.

 write
 The write system call is used to write data into a file.
 The write function puts data to a file in the form of fixed block size referred by a given file descriptor.

 The prototype of write is

 If successful, write returns the number of bytes actually written.
 If unsuccessful, write returns –1.
 The first argument, fdesc is an integer that refers to an opened file.

 The second argument, buf is the address of a buffer that contains data to be written.
 The third argument, size specifies how many bytes of data are in the buf argument.
 The return value is usually equal to the number of bytes of data successfully written to a file. (size value)

 close
 The close system call is used to terminate the connection to a file from a process.
 The prototype of the close is

 If successful, close returns 0.
 If unsuccessful, close returns –1.
 The argument fdesc refers to an opened file.
 Close function frees the unused file descriptors so that they can be reused to reference other files. This is

important because a process may open up to OPEN_MAX files at any time and the close function allows a
process to reuse file descriptors to access more than OPEN_MAX files in the course of its execution.

 The close function de-allocates system resources like file table entry and memory buffer allocated to hold
the read/write.

#include<unistd.h>

int close(int fdesc);

#include<sys/types.h>

#include<unistd.h>

ssize_t write(int fdesc, const void *buf, size_t size);

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 9

 fcntl
 The fcntl function helps a user to query or set flags and the close-on-exec flag of any file descriptor.
 The prototype of fcntl is

#include<fcntl.h>

int fcntl(int fdesc, int cmd, …);

 The first argument is the file descriptor.
 The second argument cmd specifies what operation has to be performed.

 The third argument is dependent on the actual cmd value.
 The possible cmd values are defined in <fcntl.h> header.

cmd value Use
F_GETFL Returns the access control flags of a file descriptor fdesc
F_SETFL Sets or clears access control flags that are specified in the third argument to

fcntl. The allowed access control flags are O_APPEND & O_NONBLOCK
F_GETFD Returns the close-on-exec flag of a file referenced by fdesc. If a return value is

zero, the flag is off; otherwise on.
F_SETFD Sets or clears the close-on-exec flag of a fdesc. The third argument to fcntl is

an integer value, which is 0 to clear the flag, or 1 to set the flag
F_DUPFD Duplicates file descriptor fdesc with another file descriptor. The third

argument to fcntl is an integer value which specifies that the duplicated file
descriptor must be greater than or equal to that value. The return value of
fcntl is the duplicated file descriptor

 The fcntl function is useful in changing the access control flag of a file descriptor.
 For example: after a file is opened for blocking read-write access and the process needs to change the

access to non-blocking and in write-append mode, it can call:

int cur_flags=fcntl(fdesc,F_GETFL);

int rc=fcntl(fdesc,F_SETFL,cur_flag | O_APPEND | O_NONBLOCK);

The following example reports the close-on-exec flag of fdesc, sets it to on afterwards:

cout<<fdesc<<”close-on-exec”<<fcntl(fdesc,F_GETFD)<<endl;

(void)fcntl(fdesc,F_SETFD,1); //turn on close-on-exec

flag

The following statements change the standard input og a process to a file called FOO:

int fdesc=open(“FOO”,O_RDONLY); //open FOO for read

close(0); //close standard input

if(fcntl(fdesc,F_DUPFD,0)==-1)

perror(“fcntl”); //stdin from FOO now

char buf[256];

int rc=read(0,buf,256); //read data from FOO

The dup and dup2 functions in UNIX perform the same file duplication function as
fcntl. They can be implemented using fcntl as:

#define dup(fdesc) fcntl(fdesc, F_DUPFD,0)

#define dup2(fdesc1,fd2) close(fd2),fcntl(fdesc,F_DUPFD,fd2)

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 10

 lseek
 The lseek function is also used to change the file offset to a different value.
 Thus lseek allows a process to perform random access of data on any opened file.
 The prototype of lseek is

 On success it returns new file offset, and –1 on error.
 The first argument fdesc, is an integer file descriptor that refer to an opened file.
 The second argument pos, specifies a byte offset to be added to a reference location in deriving the new file

offset value.
 The third argument whence, is the reference location.

Whence value Reference location

SEEK_CUR Current file pointer address

SEEK_SET The beginning of a file

SEEK_END The end of a file

 They are defined in the <unistd.h> header.
 If an lseek call will result in a new file offset that is beyond the current end-of-file, two outcomes possible

are:

o If a file is opened for read-only, lseek will fail.
o If a file is opened for write access, lseek will succeed.
o The data between the end-of-file and the new file offset address will be initialised with NULL

characters.

 link
 The link function creates a new link for the existing file.
 The prototype of the link function is

#include <unistd.h>

int link(const char *cur_link, const char *new_link);

 If successful, the link function returns 0.
 If unsuccessful, link returns –1.
 The first argument cur_link, is the pathname of existing file.
 The second argument new_link is a new pathname to be assigned to the same file.
 If this call succeeds, the hard link count will be increased by 1.
 The UNIX ln command is implemented using the link API.
/*test_ln.c*/
#include<iostream.h>

#include<stdio.h>

#include<unistd.h>

int main(int argc, char* argv)

{

if(argc!=3)

{

cerr<<”usage:”<<argv[0]<<”<src_file><dest_file>\n”

; return 0;

#include <sys/types.h>

#include <unistd.h>

off_t lseek(int fdesc, off_t pos, int whence);

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 11

}

if(link(argv[1],argv[2])==-1)

{

perror(“link”)

; return 1;

}

return 0;

}

 unlink
 The unlink function deletes a link of an existing file.
 This function decreases the hard link count attributes of the named file, and removes the file name entry of

the link from directory file.
 A file is removed from the file system when its hard link count is zero and no process has any file descriptor

referencing that file.
 The prototype of unlink is

 If successful, the unlink function returns 0.
 If unsuccessful, unlink returns –1.
 The argument cur_link is a path name that references an existing file.
 ANSI C defines the rename function which does the similar unlink operation.
 The prototype of the rename function is:

 The UNIX mv command can be implemented using the link and unlink APIs as shown:
#include <iostream.h>

#include <unistd.h>

#include<string.h>

int main (int argc, char *argv[])

{

if (argc != 3 || strcmp(argv[1],argcv[2]))

cerr<<”usage:”<<argv[0]<<””<old_link><new_link>\n”

;

else if(link(argv[1],argv[2]) ==

0) return unlink(argv[1]);

return 1;

}

 stat, fstat
 The stat and fstat function retrieves the file attributes of a given file.

#include<stdio.h>

int rename(const char * old_path_name,const char * new_path_name);

#include <unistd.h>

int unlink(const char * cur_link);

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 12

 The only difference between stat and fstat is that the first argument of a stat is a file pathname, where as
the first argument of fstat is file descriptor.

 The prototypes of these functions are

#include<sys/stat.h>

#include<unistd.h>

int stat(const char *pathname, struct stat

*statv); int fstat(const int fdesc, struct stat

*statv);

 The second argument to stat and fstat is the address of a struct stat-typed variable which is defined in the
<sys/stat.h> header.

 Its declaration is as follows:
struct stat

{

dev_t st_dev; /* file system ID */

ino_t st_ino; /* file inode number */

mode_t st_mode; /* contains file type and permission */

nlink_t st_nlink; /* hard link count */

uid_t st_uid; /* file user ID */

gid_t st_gid; /* file group ID

*/

dev_t st_rdev; /*contains major and minor device#*/

off_t st_size; /* file size in bytes */

time_t st_atime; /* last access time */

time_t st_mtime; /* last modification time

*/

time_t st_ctime; /* last status change time */

};

 The return value of both functions is

o 0 if they succeed
o -1 if they fail
o errno contains an error status code

 The lstat function prototype is the same as that of stat:

 We can determine the file type with the macros as shown.

macro Type of file
S_ISREG() regular file
S_ISDIR() directory file
S_ISCHR() character special file
S_ISBLK() block special file
S_ISFIFO() pipe or FIFO
S_ISLNK() symbolic link
S_ISSOCK() socket

Note: refer UNIX lab program 3(b) for example

int lstat(const char * path_name, struct stat* statv);

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 13

 access
 The access system call checks the existence and access permission of user to a named file.
 The prototype of access function is:

 On success access returns 0, on failure it returns –1.
 The first argument is the pathname of a file.
 The second argument flag, contains one or more of the following bit flag .

Bit flag Uses
F_OK Checks whether a named file exist

R_OK Test for read permission
W_OK Test for write permission
X_OK Test for execute permission

 The flag argument value to an access call is composed by bitwise-ORing one or more of the above bit flags as
shown:
int rc=access(“/usr/divya/usp.txt”,R_OK | W_OK);

 example to check whether a file exists:
if(access(“/usr/divya/usp.txt”, F_OK)==-

1) printf(“file does not exists”);

else

printf(“file exists”);

 chmod, fchmod
 The chmod and fchmod functions change file access permissions for owner, group & others as well as the

set_UID, set_GID and sticky flags.
 A process must have the effective UID of either the super-user/owner of the file.
 The prototypes of these functions are

 The pathname argument of chmod is the path name of a file whereas the fdesc argument of fchmod is the
file descriptor of a file.

 The chmod function operates on the specified file, whereas the fchmod function operates on a file that has
already been opened.

 To change the permission bits of a file, the effective user ID of the process must be equal to the owner ID of
the file, or the process must have super-user permissions. The mode is specified as the bitwise OR of the
constants shown below.

#include<sys/types.h>

#include<sys/stat.h>

#include<unistd.h>

int chmod(const char *pathname, mode_t flag);

int fchmod(int fdesc, mode_t flag);

#include<unistd.h>

int access(const char *path_name, int flag);

Mode Description
S_ISUID

S_ISGID

S_ISVTX

S_IRWXU

S_IRUSR
S_IWUSR
S_IXUSR

S_IRWXG

S_IRGRP
S_IWGRP
S_IXGRP

S_IRWXO

set-user-ID on execution
set-group-ID on execution
saved-text (sticky bit)
read, write, and execute by user (owner)
read by user (owner)
write by user (owner)
execute by user (owner)
read, write, and execute by group
read by group
write by group
execute by group
read, write, and execute by other (world)
read by other (world)
write by other (world)
execute by other (world)

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 14

 chown, fchown, lchown
 The chown functions changes the user ID and group ID of files.
 The prototypes of these functions are

#include<unistd.h>

#include<sys/types.h>

int chown(const char *path_name, uid_t uid, gid_t

gid); int fchown(int fdesc, uid_t uid, gid_t gid);

int lchown(const char *path_name, uid_t uid, gid_t gid);

 The path_name argument is the path name of a file.
 The uid argument specifies the new user ID to be assigned to the file.
 The gid argument specifies the new group ID to be assigned to the file.

/* Program to illustrate chown function */
#include<iostream.h>

#include<sys/types.h>

#include<sys/stat.h>

#include<unistd.h>

#include<pwd.h>

int main(int argc, char *argv[])

{

if(argc>3)

{

cerr<<”usage:”<<argv[0]<<”<usr_name><file>....\n”;

return 1;

}

struct passwd *pwd = getpwuid(argv[1]) ;

uid_t UID = pwd ? pwd -> pw_uid : -1 ;

struct stat statv;

if (UID == (uid_t)-1)

cerr <<“Invalid user name”;

else for (int i = 2; i < argc ; i++)

if (stat(argv[i], &statv)==0)

{

if (chown(argv[i], UID,statv.st_gid))

perror (“chown”);

}

r

e

t

urn 0;

}

LINUX PROGRAMMING (STEP MATERIAL) IV-YEAR

DEPARTMENT OF CSE CMR ENGINEERING COLLEGE Page 15

else

perr

or

(“st

at”)

;

 The above program takes at least two command line arguments:

o The first one is the user name to be assigned to files
o The second and any subsequent arguments are file path names.

 The program first converts a given user name to a user ID via getpwuid function. If that
succeeds, the program processes each named file as follows: it calls stat to get the file
group ID, then it calls chown to change the file user ID. If either the stat or chown fails,
error is displayed.

 utime Function
 The utime function modifies the access time and the modification time stamps of a file.
 The prototype of utime function is

#include<sys/types.h>

#include<unistd.h>

#include<utime.h>

int utime(const char *path_name, struct utimbuf *times);

 On success it returns 0, on failure it returns –1.
 The path_name argument specifies the path name of a file.
 The times argument specifies the new access time and modification time for the file.
 The struct utimbuf is defined in the <utime.h> header as:
struct utimbuf

{

}

 The time_t datatype is an unsigned long and its data is the number of the seconds
elapsed since the birthday of UNIX : 12 AM , Jan 1 of 1970.

 If the times (variable) is specified as NULL, the function will set the named file access and
modification time to the current time.

 If the times (variable) is an address of the variable of the type struct utimbuf, the
function will set the file access time and modification time to the value specified by the
variable.

10Q) Write about File and Record Locking?

File and Record Locking

 Multiple processes performs read and write operation on the same file concurrently.
 This provides a means for data sharing among processes, but it also renders difficulty for

any process in determining when the other process can override data in a file.
 So, in order to overcome this drawback UNIX and POSIX standard support file locking

mechanism.
 File locking is applicable for regular files.
 Only a process can impose a write lock or read lock on either a portion of a file or on the

entire file.
 The differences between the read lock and the write lock is that when write lock is set, it

prevents the other process from setting any over-lapping read or write lock on the
locked file.

 Similarly when a read lock is set, it prevents other processes from setting any
overlapping write locks on the locked region.

time_t actime; /* access time */

time_t modtime; /* modification time */

 The intension of the write lock is to prevent other processes from both reading and
writing the locked region while the process that sets the lock is modifying the region, so
write lock is termed as “Exclusive lock”.

 The use of read lock is to prevent other processes from writing to the locked region
while the process that sets the lock is reading data from the region.

 Other processes are allowed to lock and read data from the locked regions. Hence a
read lock is also called as “shared lock “.

 File lock may be mandatory if they are enforced by an operating system kernel.
 If a mandatory exclusive lock is set on a file, no process can use the read or write system

calls to access the data on the locked region.
 These mechanisms can be used to synchronize reading and writing of shared files by

multiple processes.
 If a process locks up a file, other processes that attempt to write to the locked regions

are blocked until the former process releases its lock.
 Problem with mandatory lock is – if a runaway process sets a mandatory exclusive lock

on a file and never unlocks it, then, no other process can access the locked region of the
file until the runway process is killed or the system has to be rebooted.

 If locks are not mandatory, then it has to be advisory lock.
 A kernel at the system call level does not enforce advisory locks.
 This means that even though a lock may be set on a file, no other processes can still use

the read and write functions to access the file.
 To make use of advisory locks, process that manipulate the same file must co-operate

such that they follow the given below procedure for every read or write operation to the
file.

1. Try to set a lock at the region to be accesses. If this fails, a process can
 either wait for the lock request to become successful.
2. After a lock is acquired successfully, read or write the locked region.
3. Release the lock.

 If a process sets a read lock on a file, for example from address 0 to 256, then sets a
write lock on the file from address 0 to 512, the process will own only one write lock on
the file from 0 to 512, the previous read lock from 0 to 256 is now covered by the write
lock and the process does not own two locks on the region from 0 to 256. This process is
called “Lock Promotion”.

 Furthermore, if a process now unblocks the file from 128 to 480, it will own two write
locks on the file: one from 0 to 127 and the other from 481 to 512. This process is called
“Lock Splitting”.

 UNIX systems provide fcntl function to support file locking. By using fcntl it is possible to
impose read or write locks on either a region or an entire file.

 The prototype of fcntl is

 The first argument specifies the file descriptor.
 The second argument cmd_flag specifies what operation has to be performed.
 If fcntl is used for file locking then it can values as

F_SETLK sets a file lock, do not block if this cannot
succeed immediately. F_SETLKW sets a file lock and blocks
the process until the lock is acquired. F_GETLK queries as
to which process locked a specified region of file.

 For file locking purpose, the third argument to fctnl is an address of a struct flock type

#include<fcntl.h>

int fcntl(int fdesc, int cmd_flag,);

variable.
 This variable specifies a region of a file where lock is to be set, unset or queried.
struct flock

{

short l_type; /* what lock to be set or to

unlock file */ short l_whence; /*

Reference address for the next field */ off_t

 l_start ; /*offset from the l_whence

reference addr*/ off_t l_len ;

 /*how many bytes in the locked region

*/

pid_t l_pid ; /*pid of a process which has locked the file */

};

 The l_type field specifies the lock type to be set or unset.
 The possible values, which are defined in the <fcntl.h> header, and

their uses are

 The l_whence, l_start & l_len define a region of a file to be locked or unlocked.
 The possible values of l_whence and their uses are

 A lock set by the fcntl API is an advisory lock but we can also use fcntl for mandatory
locking purpose with the following attributes set before using fcntl

1. Turn on the set-GID flag of the file.
2. Turn off the group execute right permission of the file.

 In the given example program we have performed a read lock on a file “divya” from the
10th byte to 25th byte.

#include <unistd.h>

#include<fcntl.h>

int main()

{

 int fd;

 struct flock lock;

fd=open(“divya”,O_RDONLY);

lock.l_type=F_RDLCK;

lock.l_whence=0;

lock.l_start=10;

l_type value

F_RDLCK
F_WRLCK
F_UNLCK

Use

Set a read lock on a specified region
Set a write lock on a specified region
Unlock a specified region

l_whence value

SEEK_CUR
SEEK_SET
SEEK_END

Use

The l_start value is added to current file pointer address
The l_start value is added to byte 0 of the file

The l_start value is added to the end of the file

lock.l_len=15;

fcntl(fd,F_SETLK,&lock);

}

11Q) Explain the directory file API?

 A Directory file is a record-oriented file, where each record stores a file name and the
inode number of a file that resides in that directory.

 Directories are created with the mkdir API and deleted with the rmdir API.
 The prototype of mkdir is

#include<sys/stat.h>

#include<unistd.h>

int mkdir(const char *path_name, mode_t mode);

 The first argument is the path name of a directory file to be created.
 The second argument mode, specifies the access permission for the owner, groups and

others to be assigned to the file. This function creates a new empty directory.
 The entries for “.” and “..” are automatically created. The specified file access

permission, mode, are modified by the file mode creation mask of the process.

 To allow a process to scan directories in a file system independent manner, a directory
record is defined as
struct dirent in the <dirent.h> header for UNIX.

 Some of the functions that are defined for directory file operations in the above header are

#include<sys/types.h>

#if defined (BSD)&&!_POSIX_SOURCE

#include<sys/dir.h>

typedef struct direct Dirent;

#else

#include<dirent.h>

typedef struct direct Dirent;

#endif

DIR *opendir(const char *path_name);

Dirent *readdir(DIR *dir_fdesc);

int closedir(DIR *dir_fdesc);

void rewinddir(DIR *dir_fdsec);

