UNIT-III

Elementary Combinatorics

Short Answer Questions
1.Define Combinations & Permutations:

A.Definition.

A combination of n objects taken r at a time (called an r-combination of n objects) is an unordered selection of r of the objects.

A permutation of n objects taken r at a time (also called an r-permutation of n objects) is an ordered selection or arrangement of r of the objects.

2.Suppose that the 5 objects from which selections are to be made are: a, a, a, b, c.

then the 3-combinations of these 5 objects are : aaa, aab, aac, abc. 
A.The permutations are:

aaa, aab, aba, baa, aac, aca, caa,

abc, acb, bac, bca, cab, cba.

Neither do these definitions say anything about any rules governing the selection of the r-objects: on one extreme, objects could be chosen where all repetition is forbidden, or on the other extreme, each object may be chosen up to t times, or then again may be some rule of selection between these extremes; for instance, the rule that would allow a given object to be repeated up to a certain specified number of times.

We will use expressions like {3 . a , 2. b ,5.c} to indicate either

(1) that we have 3  + 2 + 5 =10 objects including 3a’s , 2b’s and 5c’s, or (2) that we have 3
objects a, b, c, where selections are constrained by the conditions that a can be selected at most three times, b can be selected at most twice, and c can be chosen up to five times.

The numbers 3, 2 and 5 in this example will be called repetition numbers.

3.The 3-combinations of {3 . a, 2. b, 2. c , 1. d} are:

aaa, aab, aac, aad, bba, bbc, bbd,

cca, ccb, ccd, abc, abd, acd, bcd.

In order to include the case where there is no limit on the number of times an object

can be repeated in a selection (except that imposed by the size of the selection) we use the symbol ∞ as a repetition number to mean that an object can occur an infinite number of times.
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                           There are 3! =  6 permutations of {a, b, c}.

There are 4! =  24 permutations of (a, b, c, d). The number of 2-permutations

{a, b, c, d, e} is P(5, 2) = 5! / (5

· 2)! = 5 x 4 = 20. The number of 5-letter words using the letters a, b, c, d, and e at most once is P (5, 5) = 120.

 5. The 3-combinations of {∞. a, 2.b, ∞.c} are the same as in Example 2 even though a and c can be repeated an infinite number of times. This is because, in 3-combinations, 3 is the limit on the number of objects to be chosen.

A.If we are considering selections where each object has ∞ as its repetition number then

we designate such selections as selections with unlimited repetitions. In particular, a selection of

r objects in this case will be called r-combinations with unlimited repetitions and any ordered

arrangement of these r objects will be an r-permutation with unlimited repetitions.

6. In how many ways can 7 women and 3 men be arranged in a row if the 3 men must always stand next to each other?

 A.There are 3! ways of arranging the 3 men. Since the 3 men always stand next to each

other, we treat them as a single entity, which we denote by X. Then if W1, W2, ….., W7

represents the women, we next are interested in the number of ways of arranging {X, W1, W2,

W3,……., W7}. There are 8! permutations these 8 objects. Hence there are (3!) (8!)

permutations altogether. (of course, if there has to be a prescribed order of an arrangement on the 3 men then there are only 8! total permutations).

7. The combinations of a ,b, c, d with unlimited repetitions are the 3-combinations of {∞ . a , ∞. b, ∞. c, ∞. d}. These are 20 such 3-combinations, namely:

Sol:          aaa, aab, aac, aad,

bbb, bba, bbc, bbd,

ccc,  cca,  ccb, ccd,

ddd, dda, ddb, ddc,

abc, abd, acd,  bcd.

Moreover, there are 43 = 64 of 3-permutations with unlimited repetitions since the first position can be filled 4 ways (with a, b, c, or d), the second position can be filled 4 ways, and likewise for the third position.

The 2-permutations of {∞. a, ∞. b, ∞. c, ∞. d} do not present such a formidable list and so we tabulate them in the following table.
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	Of
	course,  these  are  not  the  only  constraints  that  can  be  placed  on


selections; the possibilities are endless. We list some more examples just for concreteness. We

might, for example, consider selections of {∞.a, ∞. b, ∞. c} where b can be chosen only even

number of times. Thus, 5-combinations with these repetition numbers and this constraint would

be those 5-combinations with unlimited repetitions and where b is chosen 0, 2, or 4 times.

8. In how many ways can 5 children arrange themselves in a ring?

Solution.Here, the 5 children are not assigned to particular places but are only arranged

relative to one another. Thus, the arrangements (see Figure 2-3) are considered the same if the children are in the same order clockwise. Hence, the position of child C1 is immaterial and it is only the position of the 4 other children relative to C1 that counts. Therefore, keeping C1 fixed in position, there are 4! arrangements of the remaining children.

9.There are P (10, 4) = 5,040 4-digit numbers that contain no repeated digits since

each such number is just an arrangement of four of the digits 0, 1, 2, 3 , …., 9 (leading zeroes are

allowed). There are P (26, 3) P(10, 4) license plates formed by 3 distinct letters followed by 4 distinct digits.

10. In how many ways can the letters of the English alphabet be arranged so that there

are exactly 5 letters between the letters a and  b?

Sol:There are P (24, 5) ways to arrange the 5 letters between a and b, 2 ways to place a and b, and then 20! ways to arrange any 7-letter word treated as one unit along with the remaining 19 letters. The total is P (24, 5) (20!) (2).

permutations for the objects are being arranged in a line. If instead of arranging objects in a line, we arrange them in a circle, then the number of permutations decreases.

Long  Answer  Questions
1.( Enumeratingr-permutations without repetitions).

Sol:P(n, r) = n(n-1)……. (n – r + 1) = n! / (n-r)!

Proof. Since there are n distinct objects, the first position of an r-permutation may be filled in n ways. This done, the second position can be filled in n-1 ways since no repetitions are allowed and there are n – 1 objects left to choose from. The third can be filled in n-2 ways. By applying the product rule, we conduct that

· (n, r) = n(n-1)(n-2)……. (n – r + 1). From the definition of factorials, it follows that

P (n, r) = n! / (n-r)!

When r = n, this formula becomes

P (n, n) =  n! / 0! = n!

When we explicit reference to r is not made, we assume that all the objects are to be arranged; thus we talk about the permutations of n objects we mean the case r=n.

Corollary 1.
There are n! permutations of n distinct objects.

2.(a + b + c)3 = a3 + b3 + c3 + 3a2b + 3a2c + 3b2a + 3b2c + 3c2a + 3c2b + 6abc.

A.We could have calculated each coefficient by first expanding

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2bc + 2ac, then self-multiplying it again to get (a + b + c)3 (and then if we were raising it to higher powers, we'd multiply it by itself even some more). However this process is slow, and can be avoided by using the multinomial theorem. The multinomial theorem "solves" this process by giving us the closed form for any coefficient w

might want. It is possible to "read off" the multinomial coefficients from the terms by using the multinomial coefficient formula. For example:
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We could have also had a 'd' variable, or even more variables—hence the multinomial theorem.

2.Explain Generalizations of the pigeonhole principle

A.A generalized version of this principle states that, if n discrete objects are to be allocated to m

containers, then at least one container must hold no fewer than [image: image3.jpg]
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is the ceiling function, denoting the smallest integer larger than or equal to x. Similarly, at least one

container must hold no more than [image: image5.jpg]


objects, where [image: image6.jpg]| T |



is the floor function, denoting the largest integer smaller than or equal to x.

A probabilistic generalization of the pigeonhole principle states that if n pigeons are randomly put into m pigeonholes with uniform probability 1/m, then at least one pigeonhole will hold more than one pigeon with probability
[image: image7.jpg](m)n





where (m)n is the falling factorial m(m − 1)(m − 2)...(m − n + 1). For n = 0 and for n = 1 (and m > 0), that probability is zero; in other words, if there is just one pigeon, there cannot be a conflict. For n > m (more pigeons than pigeonholes) it is one, in which case it coincides with the ordinary pigeonhole principle. But even if the number of pigeons does not exceed the number of pigeonholes (n ≤ m), due to the random nature of the assignment of pigeons to pigeonholes there is often a substantial chance that clashes will occur. For example, if 2 pigeons are randomly assigned to 4 pigeonholes, there is a 25% chance that at least one pigeonhole will hold more than one pigeon; for 5 pigeons and 10 holes, that probability is 69.76%; and for 10 pigeons and 20 holes it is about 93.45%. If the number of holes stays fixed, there is always a greater probability of a pair when you add more pigeons. This problem is treated at much greater length at birthday paradox.

A further probabilistic generalisation is that when a real-valued random variable X has a finite mean E(X), then the probability is nonzero that X is greater than or equal to E(X), and similarly the probability is nonzero that X is less than or equal to E(X). To see that this implies the standard pigeonhole principle, take any fixed arrangement of n pigeons into m holes and let X be the number of pigeons in a hole chosen uniformly at random. The mean of X is n/m, so if there are more pigeons than holes the mean is greater than one. Therefore, X is sometimes at least 2.

Applications:

The pigeonhole principle arises in computer science. For example, collisions are inevitable in a hash table because the number of possible keys exceeds the number of indices in the array. No hashing algorithm, no matter how clever, can avoid these collisions. This principle also proves that any general-purpose lossless compression algorithm that makes at least one input file smaller will make some other input file larger. (Otherwise, two files would be compressed to the same smaller file and restoring them would be ambiguous.)

A notable problem in mathematical analysis is, for a fixed irrational number a, to show that the set {[na]: n is an integer} of fractional parts is dense in [0, 1]. After a moment's thought, one

finds that it is not easy to explicitly find integers
,
such that |
−
| <
, where
> 0 is a

n
m
∈
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m
e
e

small positive number and a is some arbitrary irrational number. But if one takes M such that 1/M < e, by the pigeonhole principle there must be n1, n2 {1, 2, ..., M + 1} such that n1a and n2a are in the same integer subdivision of size 1/M (there are only M such subdivisions between

consecutive integers). In particular, we can find n1, n2 such that n1a is in (p + k/M, p + (k + 1)/M), and n2a is in (q + k/M, q + (k + 1)/M), for some p, q integers and k in {0, 1, ..., M − 1}. We can

then easily verify that (n2 − n1)a is in (q − p − 1/M, q − p + 1/M). This implies that [na] < 1/M < e, where n = n2 − n1 or n = n1 − n2. This shows that 0 is a limit point of {[na]}. We can then use

	this fact to prove the case for p in (0, 1]: find n such that [na] < 1/M < e; then if p    (0, 1/M], we

	are done. Otherwise p in (j/M, (j + 1)/M], and by setting k = sup{r

	
	

	3. Expalin Sum Rule: The principle of disjunctive counting.

A.If a set X is the union of disjoint nonempty subsets S1, ….., Sn, then | X | = | S1 | + | S2 | + ….. +

| Sn |.

We emphasize that the subsets S1, S2, …., Sn must have no elements in common.

Moreover, since X = S1 U S2 U ……U Sn, each element of X is in exactly one of the subsets Si.

In other words, S1, S2, …., Sn is a partition of X.

If the subsets S1, S2, …., Sn were allowed to overlap, then a more profound 

principle

will be needed--the principle of inclusion and exclusion.

Frequently, instead of asking for the number of elements in a set perse, some

 problems ask for how many ways a certain event can happen.

The difference is largely in semantics, for if A is an event, we can let X be the set of ways that A can happen and count the number of elements in X. Nevertheless, let us state the sum rule for counting events.

If E1, ……, En are mutually exclusive events, and E1 can happen e1 ways, E2 happen e2

ways,…. ,En can happen en ways, E1 or E2 or …. or En can happen e1 + e2 + …….. + en ways.

Again we emphasize that mutually exclusive events E1 and E2 mean that E1 or E2 can happen but both cannot happen simultaneously.

The sum rule can also be formulated in terms of choices: If an object can be selected from a reservoir in e1 ways and an object can be selected from a separate reservoir in e2 ways and an object can be selected from a separate reservoir in e2 ways, then the selection of one object from either one reservoir or the other can be made in e1 + e2 ways.

4.Explain Product Rule: The principle of sequencing counting

A.If S1, ….., Sn are nonempty sets, then the number of elements in the Cartesian product

S1 x S2 x ….. x Sn is the product ∏in=1 |S i |. That is,

| S1 x S2 x . . . . . . . x Sn |  = ∏in=1| S i |.

Observe that there are 5 branches in the first stage corresponding to the 5 elements of S1 and to each of these branches there are 3 branches in the second stage corresponding to the 3 elements of S2 giving a total of 15 branches altogether. Moreover, the Cartesian product S1 x S2 can be partitioned as (a1 x S2) U (a2 x S2) U (a3 x S2) U (a4 x S2) U (a5 x S2), where (ai x S2)

= {( ai, b1), ( ai i, b2), ( ai, b3)}. Thus, for example, (a3 x S2) corresponds to the third branch in the first stage followed by each of the 3 branches in the second stage.

More generally, if a1,….., an are the n distinct elements of S1 and b1,….,bm are the m

distinct elements of S2, then S1 x S2 = Uin  =1 (ai x S2).

For if x is an arbitrary element of S1 x S2 , then x = (a, b) where a Î S1 and b Î S2. Thus, a = ai for some i and b = bj for some j. Thus, x = (ai, bj) Î(ai x S2) and therefore x Î Uni =1(ai x S2).

Conversely, if x Î Uin =1(ai x S2), then x Î (ai x S2) for some i and thus x = (ai, bj) where bj is some element of S2. Therefore, x Î S1 x S2.

Next observe that (ai x S2) and (aj x S2) are disjoint if  i ≠ j since if x Î (ai x S2) ∩ (aj x S2) then x = ( ai, bk) for some k and x = (aj, b1) for some l. But then (ai, bk) = (aj, bl) implies that ai = aj and bk = bl. But since i  ≠ j , ai ≠ a j.

Thus, we conclude that S1 x S2 is the disjoint union of the sets (ai x S2). Furthermore |ai x S2| = |S2| since there is obviously a one-to-one correspondence between the sets ai x S2 and

S2, namely, (ai, bj) → bj.

Then by the sum rule |S1 x S2| = ∑nni=1 | ai x S2|

· (n summands) |S2| + |S2| +…….+ |S2|

· n |S2|

· nm.

Therefore, we have proven the product rule for two sets. The general rule follows by mathematical induction.

We can reformulate the product rule in terms of events. If events E1, E2 , …., En can

happen e1, e2,…., and en ways, respectively, then the sequence of events E1 first, followed by

E2,…., followed by En can happen e1e2 …en ways.

In terms of choices, the product rule is stated thus: If a first object can be chosen e1 ways, a second e2 ways , …, and an nth object can be made in e1e2….en ways.


	
	


