*8R 8R 8R 8

R17

Code No: 5458AQ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

M. Tech II Semester Examinations, June/July - 2018
THEORY OF COMPUTATION

Time:	Computer Science and Engineering) Max.Mar	ks:75	
Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.		
38	SR SR PART-A SR SX 5 Marks	S = 25	
1.a) b) c) d)	Write a context free grammar for the language $\{0^n1^n/n \ge 1\}$. Discuss the variants of Turing machines.	[5] [5] [5] [5]	
PART - B			
	$5 \times 10 \text{ Marks}$	s = 50	
2.	Construct a DFA to accept strings of 0's, 1's and 2's beginning with a 0 follow odd number of 1's and ending with a 2. OR Show that if L is regular grammar the L is a regular set.	ed by [10]	
4.	Convert the following grammar G into CNF: S->aAD A->aB bAB B->b D->d	[10]	
5.	OR Construct PDA to accept if-else of a C program and convert it to CFG.		
6.	(This does not accept if -if -else-else statements) Show that L is recognized by a Turing machine with a two way infinite tape if and if it is recognized by a Turing machine with a one way infinite tape.	[10] l only [10]	
	OR CONTRACTOR	s = 1.)	
7.	Define Turing Machine and design it to recognize the language $L = \{0^n 1^n \mid n\}$ Illustrate the action of Turing machine in accepting the word $0^3 1^3$.	>=1}. [10]	
3	Explain the Decidable problems concerning to context-free languages.	[10]	
9.	What is mapping reducibility? Explain the process to perform it.	[10]	
10.	State and explain in detail about Cook-Levin Theorem. OR	[10]	
3 2.	Give an example to explain the Hamiltonian path problem in detail.	[10]	