	8R	8R 8R 8R 8R 8R	8
1	Code	No. 1324 G	
	Code	No: 132AC JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD	
		B.Tech I Year II Semester Examinations, August - 2018	
	8R (c	MATHEMATICS - III COMMON TO CE, EEE ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE, MSNT)	8
	Time	Max. Marks: 75	
	Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A: Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.	8
		PART- A	
	1.a)	Find the mean and variance of the probability distribution having pdf,	x -
		$f(x) = e^{-x}, x > 0$ [2]	
	∀ b)	A fair coin is tossed until a head or consecutive five tails occurs. Find the discrete probability distribution.	
	c)	Write the conditions of validity of χ^2 -test. [2]	N
	d)	Construct sampling distribution of means for the population 3, 7, 11, 15 by drawing	
		samples of size two without replacement. Determine i) μ ii) σ iii) Sampling distribution of means.	
	e)	of means. [3] Discuss types of errors of the test of hypothesis. [2]	
	\bigcirc \bigcirc \bigcirc \bigcirc	Give the graphical interpretation of the bisection method.	
	$\bigcup [\setminus g]$	Write the iterative formula for finding $\sqrt[3]{N}$ using method of false position. [2]	
	h)	Explain briefly about method of least square. [3]	
	i) j)	Derive Trapezoidal rule for computing integral $\int_a^b f(x)dx$. [2] What are the limitations of Taylor's series method? [3]	n
	J <i>)</i>	what are the minitations of Taylor's series method:	
	$\sum_{2.a)}$	Let $f(x) = 3x^2$, when $0 \le x \le 1$ be the probability density function of a continuous random variable X. Determine a and b such that	
		i) $P(X \le a) = P(X > a)$ ii) $P(X > b) = 0.05$.	
	b)	Probability density function of a random variable X is	
		$f(x) = \begin{cases} \frac{1}{2} \sin x, 0 \le x \le \pi \\ 0, & \text{elsewhere} \end{cases}$	
	8R	Find the mean, mode and median of the distribution. OR [5+5]	(
	3.a)	A die is cast until 6 appears. What is the probability that it must be cast more than	
	b)	5 times? The marks obtained in mathematics by 1000 students is normally distributed with mean	
	~,	78% and standard deviation 11%. Determine:	•
	RP -	i) What was the highest mark obtained by the lowest 25% students? ii) Within what limit did the middle 90% of the student lie? [5+5]	
	\sim 1 \sim		·

Ĭ.

8R	8R 8R 8R 8R 8R
4.a)	Explain why the larger variance is placed in the numerator of the statistic F. Discuss the application of F-test in testing if two variances are homogenous.
b)	A sample of 11 rats from a central population had an average blood viscosity of 3.92 with
8R -	a standard deviation of 0.61. Estimate the 95% confidence limits for the mean blood viscosity of the population. [5+5]
5.a)	The mean voltage of a battery is 15 and standard deviation 0.2. Find the probability that
	four such batteries connected in series will have a combined voltage of 60.8 or more volts.
b)	Discuss critical region and level of significance with example. [5+5]
∂ (6.a)	Suppose the diameter of motor shafts in a lot have a mean of 0.249 inches and standard deviation if 0.003 inches. The inner diameter of bearings in another lot have a mean of
· ·	0.255 inches and standard deviation of 0.002 inches. If a shaft and bearing are selected at
	random, find the probability that the shaft will not fit inside the bearing. Assume that both dimensions are normally distributed.
b)	A sample of 400 items is taken from a normal population whose mean is 4 and
20	variance 4. If the sample mean is 4.45, can the samples be regarded as a simple sample?
$\cup \cup \setminus$	ON ON ON ON ON ON
7.	In a sample of 600 students of a certain college 400 are found to use ball pens. In another college from a sample of 900 students 450 were found to use ball pens. Test whether two
	colleges are significantly different with respect to the habit of using ball pens? [10]
	, and the second se
8R.	Estimate y at $x = 5$ by fitting a least squares curve of the form $y = \frac{b}{x(x-a)}$ to the following data
	x 3.6 4.8 6.0 7.2 8.4 9.6 10.8
	y 0.83 0.31 0.17 0.10 0.07 0.05 0.04
	OR
<u> </u>	Show that the Gauss-Seidel methods diverge for solving the system of equations
SH "	2x + 3y + z = -1; 3x + 2y + 2z = 1; 3x + 2y + 2z = 6
10.	Find the successive approximate solution of the differential equation $y' = y$, $y(0) = 1$ by
	Picard's method and compare it with exact solution. [10] OR
11.	Use Runge-Kutta method of order four to find y when $x = 0.6$ in steps of 0.2 given that
<i></i>	
8R -	
8R -	**************************************
8R -	
8R	

8R 8R 8R 8R 8R 8R 8