R16

Code No: 132AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year II Semester Examinations, August - 2018

MATHEMATICS - II

(Common to EEE, ECE, CSE, EIE, IT, ETM)

Max. Marks: 75

Time: 3 hours

Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

Find the Laplace transform of the function $f(t) = t^2$. [2] 1.a) [3] Find Laplace transform of $4\sin(t-3)$. b) Show that $\Gamma(n) = 2 \int_0^\infty e^{-x^2} x^{2n-1} dx$. [2] c) Show that $\beta(p,q) = \beta(p+1,q) + \beta(p,q+1)$. Find the area bounded by the curves $y = x, y = x^2$. d) [2] [3] Evaluate $\iint_{0}^{\infty} x^2 y^2 dx dy$ f) [2] If $\phi = x^2 y^2 z^2$ then find Grad ϕ . g) Find a unit normal vector to the surface $x^2 + y^2 + 2z^2 = 26$ at the point (2,2,3). [3] h) Find curl \overline{F} when $\vec{F} = 3x^2i + (2xz - y)j + zk$. [2] Is the work done by a force in moving a particle from one point to another point in an

PART-B

irrotational field is independent of the path of integration? Justify the answer.

(50 Marks)

[3]

- Use Laplace transforms, solve y''(t) + 5y'(t) + 6y(t) = t, y(0) = 1, y'(0) = 1. [10]
 - Solve by using Laplace transforms $y'' + 4y' + 3y = e^{-t}$ with y(0) = y'(0) = 1. [10] 3.
 - Prove that $\int_0^1 \frac{x^2 dx}{\sqrt{1-x^4}} \times \int_0^1 \frac{dx}{\sqrt{1+x^4}} = \frac{\pi}{4\sqrt{2}}$ using $\beta \Gamma$ functions. [10]
 - Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ Prove that $\beta(m,n) = \frac{\Gamma(m)\Gamma(n)}{\Gamma(m+n)}$. [5+5]

