Code No: 121AL

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year Examinations, August - 2018

MATHEMATICAL METHODS

(Common to EEE, ECE, CSE, EIE, IT, ETM)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question

carries 10 marks and may have a, b, c as sub questions.

~		-	m	
ν	Δ	к	Т-	A
	4	11		4

(25 Marks) [2]

Construct the forward difference table for the following data. 1.a)

x :	1	2	3	4	5
у:	4	13	34	73	136

Write the normal equations to fit a curve of the form b) $y = a + bx + cx^2$ for the data $(x_i, y_i), i = 1, 2, ..., n$

Derive the Newton-Raphson iterative formula to find \sqrt{N} , N > 0. c)

[2]

Evaluate $\int x^3 dx$ using Trapezoidal rule with $h = \frac{1}{4}$. d)

[3]

Determine the Fourier coefficient a_0 in the Fourier series of

 $f(x) = |\sin x| \quad \text{in } [-\pi, \pi].$ Find the Fourier sine transform of $f(x) = e^{-x}$.

[3]

f) Obtain a partial differential equation by eliminating the arbitrary function 'f' from g) [2]

 $z = f(x^2 + v^2).$

[3]

Solve pq = z.

Find the unit normal vector to the surface $2x^2 + y^2 + 2z = 3$ at (2, 1,

State Stoke's theorem.

PART-B

(50 Marks)

Find the cubic polynomial which takes the values 2.a)

y(0) = 1, y(1) = 0, y(2) = 1 and y(3) = 10.

Using Lagrange's formula to find y(10) from the data given below.

x :	5	6	9	11
y :	12	13	14	16

3.a)	Using the method of least squares, fit a straight line of the form $y = ax + b$ for the
	following data.

v·	1	2	3	4
Λ. 	<u> </u>	1 1	1	2

Fit a curve of the form $y = ab^x$ to the following data.

10		-	7
1	1-1	-	1
-		-	3
L-)	J	1

· ·	1	2	3	4
<u>,,</u>	1	111	35	100

$$2x + 3y + z = 9$$

$$x + 2y + 3z = 6$$

$$3x + y + 2z = 8$$

5.a) Find
$$\frac{dy}{dx}$$
 at $x = 0.1$ from the following table.

						1 . 0
x:	0.0	0.2	0.4	0.6	0.8	1.0
X:	(0.0)	0.2	0.49	1 10	20	3.20
v:	0.0	0.12	0.48	1.10	12.0	

b) Find an approximate value of
$$y(0.1)$$
 for $y' = \frac{y-x}{y+x}$, $y(0) = 1$ by Euler's method with [5+5]

$$h = 0.02$$
.

Obtain the Fourier series for
$$f(x) = x^2$$
 in $[-\pi, \pi]$

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}.$$

b) Find the half range cosine series for the function
$$f(x) = x$$
 in $[0, \pi]$.

[5+5]

7. Find the Fourier transform of
$$f(x) = \begin{cases} 1 - x^2, & |x| < 1 \\ 0, & |x| > 1 \end{cases}$$
 and hence evaluate:

$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} \cos \left(\frac{x}{2}\right) dx.$$
 [10]

8.a) Solve
$$p + 2q = \tan(y - 2x) + 5z$$
.

a) Solve
$$p + 2q = \tan(y)$$

b) Solve $z = px + qy + p^2 + q^2$ by Charpit's method.

[5+5]

9. A square plate is bounded by the lines
$$x = 0$$
, $y = 0$, $x = 20$ and $y = 20$ and its Faces are insulated. The temperature along the upper horizontal edge is given by $u(x,20) = x(20-x)$, $0 < x < 20$ while other three edges are kept at 0° C. Find the steady state temperature in the plate.

- 10.a) Find the directional derivative of $f(x, y, z) = x^2 yz + 4xz^2$ at (1, -2, 1) in the direction of the Vector $2\hat{i} \hat{j} 2\hat{k}$.
- b) If $\overline{F} = grad(x^3 + y^3 + z^3 3xyz)$, find $\nabla \cdot \overline{F}$ and $\nabla \times \overline{F}$.

[5+5]

OR

11. Verify Green's theorem for $\oint_C (x^2 - \cosh y) dx + (y + \sin x) dy$, where C is the rectangle with vertices $(0,0), (\pi,0), (\pi,1)$ and (0,1).

8R 8

8 R

8

8 -

8R 8R 8R 8R 8R 8H

8R 8R 8R 8R 8R 8R

8R 8R 8R 8R 8R 8R

8R 8R 8R 8R 8R 8R

8R 8R 8R 8R 8R 8R