3R	8R 8R 8R 8R 8R 8	
8R	Code No: 133AJ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2018 DIGITAL LOGIC DESIGN (Common to CSE, IT) Max. Marks: 75	(
8R	Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART- A (25 Marks)	>
8 R	1.a) Write the advantages of floating-point representation. [2] b) Distinguish between weighted and non-weighted codes with example. [3] c) What is the use of don't care combinations? [2] d) Implement the following function using only NOR Gates F=a.(b+c) + (b.c). [3] e) Define a combinational circuit, give its block diagram. [2] f) Write a short notes on priority encoder. [3] Differentiate between a latch and a flip flop. [2] h) Define Hazard. Mention various types of hazards. [3] i) Why programmable AND gates are used in PLA instead of a decoder. [2] j) Write the applications of logical micro operations. [3]	
8R	2.a) Implement AND, OR, NOR by using NAND gates only. b) Derive the hamming code for the sequence (101011). OR PART-B (50 Marks) [5+5]	
8R	3.a) Convert the following to the corresponding bases i) (343) ₅ = () ₆ ii) (7654) ₈ = () ₁₀ Explain about even and odd parity check with an example, what is the drawback. [5+5] 4.a) Derive the sum of minterms for f(a,b,c,d)=a'b+ab'd+c'd b) Derive and Implement Exclusive OR function involving three variables using only NAND function. [5+5]	2
ġR	Obtain the simplified expression in POS (product of sums) of $F(\overline{w},x,y,z) = \pi(1,2,4,7,12,14,15) \text{ using K-maps.}$ Implement the function $f(a,b,c) = \sum (1,3,4,6)$ using NOR-NOR two level gate structure.	1
8R	6. Realize a full subtractor using decoders. OR 7.a) Define a multiplexer? Draw a 2:1 multiplexer for the function $f(x,y,z)=\sum (0,2,3,5,7)$ b) Write the steps involved in designing a combinational circuit. [5+5]	7

				=			
8R	8R	8R	3 _R	8R	8R	8R	
	8. What is th	e drawback of and explain with	JK flip flop, des n neat diagram. OR	sign a flip flop v	which overcomes	this)]	
8 P	b) Analyze la	tch with NOR g	f asynchronous segates, derive trans	illon, now and st		and the second	
	size.		OR ister transfer? Exp		[1]	<i>7</i>]	
8 R	11. What do y bus buffer.		=oo0oo	18P	8R [11) 8 - 2	
8R	8.	,8R	88	8 R	8,8	8R.	Section 18 and
8 R	87	8 R	8R	8 R	8 R	3R.	
88	8R,	8R	88	8R	8R	8 .	
8R	8R	8R	87	8R	8R	8P	
QD		2P	8 P	88	8R	8R.	