# 3	200	4
16	100	O

Code No: 135AF JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, November/December - 2018 DESIGN AND ANALYSIS OF ALGORITHMS (Common to CSE, IT) Max. Marks: 75 Time: 3 hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART - A (25 Marks) Write an algorithm to find the number of digits in the binary representation of a 1.a) [2] positive decimal integer. [3] How can we measure an algorithm's running time? b) What is a set? List the operations that can be performed on it. c) [3] Give brief note on graph coloring. d) [2] State the Job - Sequencing Deadline Problem. e) Find an optimal solution to the knapsack instance n=4 objects and the capacity of f) knapsack m=15, profits (10, 5, 7, 11) and weight are (3, 4, 3, 5). [3] [2] What is Travelling Sales Man Problem? g) [3] Give the statement of Reliability design problem. h) State the methodology of Branch and Bound. i) Define Bounding Function? Give the statement of 0/1 Knapsack FIFO BB. PART - B (50 Marks) Explain Recursive Binary search algorithm with suitable examples. 2.a) [5+5]Distinguish between Merge sort and quick sort. b) OR What is stable sorting method? Is Merge sort a stable sorting method? Justify your 3.a) Explain partition exchange sort algorithm and trace this algorithm for n =8 elements: b) [5+5] 24,12, 35, 23,45,34,20,48. Write and explain the algorithm of Bi connected components with an example. OR Give the solution to the 8-queens problem using backtracking. What is Minimum cost spanning tree? Explain an algorithm for generating minimum 6. [10]cost Spanning tree and list some applications of it.

Explain the greedy technique for solving the Job Sequencing problem.

Write with an example of Prim's algorithm.

7.a)

b)

8.a)	Discuss the ti	me and space con	mplexity of Dyna	amic Programmir	ng traveling sales	person
b)	Write an algo	[5+5]				
9.	With the help	of suitable exan	ple explain the a	ll pairs shortest p	oath problem.	[10]
10.a) b)	Give the 0/1 Differentiate	[5+5]				
11. 8 R	n = 5, $(p1,p2)$	tion of state space,,p5) = (10,15) al solution of the	.6,8,4), (w1,w2,	by LCBB for the,w5) = (4,6,3,4,	2) and m=12. A	nstance: .nd also
			ooOoo			
87	8 R	8R	88	8 8	88	88
88,	8R	87	87	8 R	8R.	8.2
8R.	8 R	88	8R	8R	8R	8R
8P.	8P	8R.	8R	8R	8R ,	8R
8 R	8 R	8 8	8R	8R,	88	187