| | :8R | 8R | 8R | 8 | 8 R | 8 R | . 8H | |-----|------------------------------|---|--|---|---|--------------------|---| | | . 8R | | RLAL NEHRU T
1 II Year I Seme
A | | ons, November/I | | BAD
B | | | Not | Part A is co | on paper contains ompulsory which onsists of 5 Un ion carries 10 mar | carries 25 marks
its. Answer an | . Answer all que
y one full que
e a, b, c as sub qu | estion from each | 8R | | | 1.a) b) c) d) e) f) g) h) i) | Classify the Why the h p What are the What is case State the ad What is mea State the Ba What are the | e types of distortic amplifiers according to a second parameter model is elements in the code amplifier? vantages and disa ant by positive and rkhausen criterion erequirements of finition of power | ding to the methors not suitable to Hybrid 'II' mod dvantages of the d negative feedben for oscillations a tuned amplifie | od of coupling. analyze transisto el? source follower. ack? | or at high frequen | [3]
[2]
[3]
[2]
[3]
[2] | | | 2. | | -parameter equiv
ssion for A _i , A _v , F | alent circuit for | a typical comr | | 50 Marks)
olifier and
[10] | | | 3. | Draw simpli
the cascode
h _{ie} 2 KΩ, h _{re} | fied h parameter circuit shown in =h ₀ =0. | equivalent circu | it and calculate e that transistors | s are identical w | ind R _o ' for ith h _{te} =10, | | 140 | 8R | 8R | 8 R | 200K
C R ₂
R ₂ | T ₂ T ₀ R ₀ 100Ω | | 88 | | | 8R | 8R | 8 - | Figure: 1 | 88 | .
8R | 8R | ## 8R 8R 8R 8R 8R 8R 4.a) Derive an expression for current gain with resistive load. The hybrid- Π parameters of the transistor used in the circuit shown in figure 2 are b) g_m = 50 mA/V, $r_{b'e}$ =1 K Ω , $r_{b'c}$ =4 M Ω , r_{ce} =80 K Ω , C_c =3 pF, C_e =100 pF and $r_{bb'}$ =100 Ω , find (i) upper 3 dB frequency of current gain (ii) the Magnitude of voltage gain at A_{vs}=V₀/V_s at frequency of part (i) +V_{CC} \$R_L=1 kΩ Figure: 2 OR A single stage CE amplifier is measured to have a voltage gain bandwidth fu of 5 MHz with $R_L=500~\Omega$ Assume $h_{fe}=100$, $g_m=100~mA/V$, $r_{bb}=100\Omega$, $C_C=1pF$ and $f_T=400~MHz$. (i) find the value of source resistance that will give the required bandwidth. (ii) with the value of Rs found in (i), find the mid band voltage gain V_0/V_s . In hybrid 'pi' model of a transistor at high frequencies, show that the gm is proportional to b) the collector current. [5+5]Discuss the input and output characteristics of a folded cascade amplifier with NMOS 6.a) input. Derive expression for A_v and R_o for common gate amplifier. b) [5+5] 7.aDraw and explain the CS stage with diode connected load. Discuss the MOSFET characteristics in depletion mode. b) [5+5]Show that for a current series feedback amplifier the input and output resistances are 8.a) increased by a factor if (I+AB) with feedback. Identify the topology of feedback in the circuit of figure 3 giving Justification. Two transistors are identical with h_{ie} =2 K and h_{fe} =100. Calculate i) R_{if} (iii) A_{if} (iii) A_{vf} ∳R_{c1} ≸12 Κ Figure: 3 | | | | 8R ' | .8R | 88 | 8R | 87. | 85 | | |---------------------------------------|------------|-------------|---|--|---|---------------------------------------|--|-----------------------|--| | | | | | | | | | | | | | ç | b) | Explain the p
Mention the | | [5+5] | | | | | | 2 | ¯`} 1
ጚ | (0.a)
b) | Show that the Compare the | e transformer cou
push-pull class I | upled class A amp
and complement
OR | olifier maximum
tary symmetry c | efficiency is 50% lass B amplifier. | 6. <u>C</u> | | | | . 1 | 1.a) | A tuned amp
BW. An FET
circuit elemen | with $g_m=5 \text{ mA/}$ | to have a voltag | ge gain of 30 at
2 is available. C | 10.7 MHz with alculate the value | 200 KHz
es of tank | | | | | b) | | | cy response of tu | ned amplifier. | | [5+5] | | | 3 [| 7 | | 3R | | S | | 8 | | | | 9 | see herengy in the see | | | | | | | on: | | | | >-< | 7 | | <u>d</u> | | | | OK | CT. | | | | | | * | | | | | | | | | | | 7 | | | | | | | | | en, | | 20 | 20 | 20 | | | | | | · · · · · · · · · · · · · · · · · · · | (| | | | | | Same of the o | 3 | <u> </u> | | 88 | 82 | 88 | | | 87 | | | | | 3 | | Sand : ". | Sound | | A | Su com se s | |).... >....)... }...