R17	*	_	MAN
	8.)	1	\neg
			- /

Code	No: 5421AA JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
	M. Tech I Semester Examinations, June/July - 2018
print, printing	ADVANCED THERMODYNAMICS
,	(Thermal Engineering)
Time:	May Marke 75
Note:	This proper contains two parts A and B
Tiote.	Port A is compulsory which carries 25 marks. Answer all questions in Fait A.
	Part B consists of 5 Units. Answer any one full question from each unit. Lach
	question carries 10 marks and may have a, b, c as sub questions.
	RART-A SR SR SR SR
><	$\bigcirc \bigcirc $
Supplied to No.	
1 -)	What do you mean by thermodynamic potential? List out various thermodynamic
1.a)	notentials
b)	Explain briefly Amagat's law. [5]
c)	What do you understand by phase equilibrium?
\bigcirc d)	Draw layout and n-h plot for simple vapour compression refrigeration cycle. [5]
	What are the advantages of direct energy conversion systems over conventional energy
e)	conversion methods? [5]
***	Conversion methods.
	PART - B
	$5 \times 10 \text{ Marks} = 50$
	kam - 6 m 10 Millio (1801) 2 1
- 2.a)	Derive an expression for availability in steady flow system. [5+5]
b)	Derive availability equation for non-now process.
	OR
3.a)	Derive Maxwell Relations. A water pump is used to raise water from a reservoir on ground to feed an overhead tank
b)	complete storied building of 50 m height. First the water is also sent inrough a purifying
	plant where in a pressure drop of 50 kPa occurs. Estimate the power input to the pump. It
OD:	1. It is a single 50% of the nower input and the water 110W rate is 1000
$O \cap A$	liters per min. Given the water temperature rises by 1°C while passing through the pump
	and its Cp= 4.2 kJ/kg K , $\rho = 1000 \text{ Kg/m}^3$. [5+5]
	country 60°C is expanded to a pressure
4.	0.25 m^3 of gas under a pressure of 14 bar and temperature 60° C is expanded to a pressure of 3.5 bar along curve, the equation of which is $pv^{1.3} = C$. If Cp and Cv are 2.18
	of 3.5 bar along curve, the equation of which is py
	and 1.55 respectively find a) The heat added or rejected during the expansion and
$\geq < $	b) Change in entropy. [5+5]
	\mathbf{OR}
5.a)	Prove that internal energy, enthalpy, Gibbs function and Helmholtz functions are
<i>- - - - - - - - - -</i>	1 1
b)	the first of mass 10 kg is at a temperature of 200°C. Estimate the maximum
	possible work that can be obtained from it, when the ambient temperature is 27 C.
	$C_{P} = 0.5 \text{ kJ/kg K.} \bigcirc \bigcirc$
ok.	
consequence of the control of	

				142 H					
6.a) b)	Define chemical potential of a component in terms of U, H and G. Gaseous butane at 25°C is mixed with air at 400K and burned with 400% theoretical air. Determine the adiabatic flame temperature. [5+5]								
7.	process of fue	l C ₈ H ₁₈ burnt	er developed an with 200% theo t temperature is 2	retical air. Th	y of a chemica e products of c	l reaction ombustion [10]			
8.a)	m	Access to the second se	agar relations in	Deal Add					
b)	Explain the pro	ocedure for seco kine power cycl	ond law analysis e.	of power cycle	. Describe the s	[5+5]			
9.			OR ned cycle power §			[10]			
S 10.a) b)	Derive the exp	ression for powe	fect? How space r and efficiency f	or a thermionic	generator.	[5+5]			
11.	Explain with a dynamic genera	n neat diagram ator plant and its	the working pring applications and	nciple of a Liq advantages.	uid metal Magr	neto hydro [10]			
8R		8 5	ooOoo						
				- QD	90.				
ok.									
2 2	AR T	8 P	8 R	8P.					
			20	QQ.					

8R 8R 8R 8R 8R 8F