Code No:5421AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M.Tech I Semester Examinations, December – 2018/ January - 2019 ADVANCED HEAT TRANSFER

	ADVANCED HEAT TRANSFER
Time: Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.
$\mathbb{R}_{1.a}$	PART - A 5 × 5 Marks = 25 Show that the radial heat conduction through a hollow cylinder depends on the logarithmic mean area of the inside and outside surfaces. [5] [5]
b) c)	mean area of the inside and outside surfaces. Explain in detail, the differences between implicit and explicit methods. [5] Explain the principle of dimensional homogeneity. How is it utilized in deriving the dimensionless groups? [5]
(d) e)	dimensionless groups? [5] Explain the significance of combined forced and natural convection. [5] Discuss the assumptions made in the Nusselts theory of film condensation on a vertical plate. [5]
	PART - B $5 \times 10 \text{ Marks} = 50$
• es	, at a Discuss
2.a) b)	Can fins prove not only not effective but also counterproductive? Discuss. Derive the 1D steady state heat conduction equation for a slab with internal heat generation. OR OR
3	Determine the current in amperes that is passed through a stainless steel wire $(k = 15.1 \text{ W/m K})$, 3 mm in diameter. The electrical resistivity of the steel is 70 micro ohm cm and the maximum temperature of the wire is 236° C. The wire is submerged in a liquid at 110° C with a convection heat-transfer coefficient of 400 W/m^2 K. [10]
4. a) b)	Define and explain the physical significance of Biot and Fourier numbers. Define and explain the physical significance of Biot and Fourier numbers. A short iron cylinder ($k = 60 \text{ W/m K}$, $\alpha = 1.6 \times 10^{-3} \text{ m}^2/\text{s}$) of diameter 5 cm and height 4 cm is initially at a uniform temperature of 225°C . Suddenly the boundary surfaces are exposed to an ambient fluid at 25°C with a heat transfer coefficient of 500 W/m ² K. Calculate the center temperature at 2 min after the start of cooling. [5+5]
5. a) b)	In what medium is the lumped system analysis more likely to be applicable: in water or air? Why? Let $p = 100 \text{ mm}$ diameter and $p = 8954 \text{ kg/m}^3$, $C_p = 383 \text{ J/kg K}$,

			e					
8R	8R	8R	8R	8 R	8R	3R		
6. 3 • 7 .	over a flat pla maintain it at An air stream is 45 cm long	te 0.5 m long. Es a surface tempera at 0°C is flowing and 60 cm wide	nd a temperature stimate the cooling atture of 27°C. OR galong a heated place. Assuming the tale average value are plate. Also calculates	ate at 90°C at a ransition of both	speed of 75 m/s undary layer tak	[10] . The plate es plate at transfer		
8. a) b)	What do you mean by Boussinesque approximation? A 15 cm diameter steel shaft is heated to 350°C for heat treatment. The shaft is then allowed to cool in air (at 20°C) while rotating about its own horizontal axis at 4 rpm. Compute the rate of convection heat transfer from the shaft when it has cooled to 100°C. [5+5]							
9. 8R	OR A water heater is fabricated by a resistance wire wound uniformly over a 10 min diameter and 4 m long tube. The resistance element maintains a uniform heat flux of 1000 W/m ² . The mass flow rate of water is 12 kg/h, and its inlet temperature is 10°C. Estimate the surface temperature of the tube at exit.							
10.	Derive an ex	pression for Nu	sselt number for	laminar film	condensation on	a vertical [10]		
8R	What is a gra	y body? Derive t	OR he expression for efractory surface.	radiation heat e	exchange betwee	n two gray	<i>Y</i>	
,			00000					
38	8R.	8 R	8R	8R				
	8R	8.						
22	· 82	82	88	8R	8R	8R		