R17

Code No: 5421AC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech I Semester Examinations, December – 2018/January - 2019 ADVANCED FLUID MECHANICS

? []	ADVANCED FLUID MECHANICS (Thermal Engineering)	Max.Marks	75
Time:	3hrs	Max.Marks	.,, 5
Note:	This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all of Part B consists of 5 Units. Answer any one full question from the question carries 10 marks and may have a, b, c as sub questions. PART - A	om each unit. 5 × 5 Mark	3R
1.a) b) c) d) e)	Show that stream lines and equipotential lines intersect orthogonally Explain what is meant by Hagen poisoulle flow and its significance. Explain the principle of drag force due to boundary layer. What is meant by prandtl mixing length model? Explain. Explain Fanno and Raleigh lines.	. [5 [5 [5] [5]	
	PART-B	5 × 10 Mark	cs = 50
e e			
2.a)	Derive Euler's equation of motion. A pipe of diameter 200 mm converges to a diameter of 100 mm. The pressure intensities being 400 kPa and 250 kPa at the larger are Ignoring energy losses find the discharge. OR	id the sinane.	water, ections. 5+5]
3.a) b)	Compare and contrast circulation and vorticity. Water flows down an inclined tapering pipe 45 meters long at a slo at the upper and lower ends of the pipe are 8 metres ² and 3 me velocity at the lower end is 4.5 meters per second and the press 100 kPa, calculate the pressure at the lower end and the rate of Ignore energy losses.	ure at the upper flow through the	end is
4.a) b)	Obtain the relation between shear stress and pressure gradient. Oil of specific gravity 0.90 flows at 11.30 liters/sec through a 75 pipe. If the pressures drop per 300 m length of the pipe is 415 kF the oil. Verify if the flow is laminar. OR Derive the Navier stokes equation from the fundamentals. Crude oil of dynamic viscosity 0.15 Ns/m² and specific graa a 20 mm diameter vertical pipe. Two pressure gauges have been pressure gauge fixed at higher level reads 200 kPa and that at the Find the direction and the rate of flow through the pipe.	vity 0.9 flows	[5±5] through part. The
ón	go go gr 8R	동 토 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시 시	ðh

6.a) b) 7.a) b) 8.a) b) 9.a) b)	In a stream of oil specific gravity 0.93 and kindhadding specific gravity 0.95 and kindhadding specific gravity 0.85 and kindhadding specific grav						
11.a) 8 R		eral equation for els in air of pres a number and the			elocity of 1650 I 29.27 m/ ⁰ K.	cm/ hour. [5+5]	
			00O00				
8R	88	8R	8R	18R	8,	8	
3 3 4					Mark.		
on	<u>.</u> QD	QD	. QD	8 P	88	8 F	