Code No: 131AA

R16

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech I Year I Semester Examinations, December - 2017

MATHEMATICS-I

(Common to CE, EEE, ME, ECE, CSE, EIE, IT, MCT, ETM, MMT, AE, MIE, PTM, CEE, MSNT)

Time: 3 hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART- A

1.a) Define exact differential equation. Give an example.

(25 Marks) [2]

b) Find a particular integral of $y'' - 2y' + y = \frac{e^x}{x}$.

[3]

c) Show that the matrix $A = \begin{pmatrix} 3i & 2+i \\ -2+i & -i \end{pmatrix}$ is Skew-Hermitian.

[2]

d) Find the values of a and b such that the system

2x+3y+5z=9, 7x+3y-2z=8, 2x+3y+az=b has no solution.

[3]

e) Find the sum and product of the Eigen values of the matrix $A = \begin{pmatrix} 2 & 5 & 7 \\ 1 & 4 & 6 \\ 2 & -2 & 3 \end{pmatrix}$. [2]

Write the quadratic form corresponding to the matrix $A = \begin{pmatrix} 1 & 5 & 7 \\ 5 & 4 & 6 \\ 7 & 6 & 3 \end{pmatrix}$.

[3]

g) If u = f(x - y, y - z, z - x), find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$.

[2]

h) Expand $f(x,y) = e^{xy}$ about origin up to 2^{nd} degree terms.

[3]

i) Form a partial differential equation by eliminating the arbitrary function f from $z = f(x^2 + y^2)$. [2]

j) Solve $\sqrt{p} + \sqrt{q} = 1$.

[3]

PART-B

(50 Marks)

2.a) Solve $(3xy^2 - y^3)dx - (2x^2y - xy^2)dy = 0$.

b) Solve $y'' + y = x \sin x$.

[5+5]

OR

3.a) Apply the method of variation of parameters to solve $y'' - y = x^2$.

b) If the temperature of the air is 30° C and the substance cools from 100° C to 70° C in 15 minutes, find when the temperature will be 40° C.

- Find the rank of the matrix $A = \begin{pmatrix} 0 & 1 & -3 & -1 \\ 0 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \end{pmatrix}$ by reducing to echelon form.
 - Show that the system of equations 5x + 3y + 7z = 4, 3x + 26y + 2z = 9, 7x + 2y + 10z = 5is consistent and hence solve it.

OR

- Solve the system of equations 2x-2y-2z=-4, -y+z=-1, -x+5y+2z=65. by LU – decomposition method.
- Find the Eigen values of $5A^5 2A^2 + 7A 3A^{-1} + I$, if $A = \begin{bmatrix} -3 & -7 & -3 \\ 2 & 4 & 3 \\ 1 & 2 & 2 \end{bmatrix}$.
 - Using Cayley-Hamilton theorem, find A^{-1} and A^{-2} if $A = \begin{pmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -4 & -3 \end{pmatrix}$. [5+5]

- Reduce the quadratic form $Q = 8x^2 + 7y^2 + 3z^2 + 12xy + 4xz 8yz$ to canonical form and hence find its rank, nature, index and signature.
- If $f(x,y) = \ln\left(\frac{x^4 + y^4}{x + y}\right)$, show that $x f_x + y f_y = 3$.
- Determine whether the functions $u = \frac{x+y}{x-y}$, $v = \frac{xy}{(x-y)^2}$ are dependent. If so, find the relation between them. [5+5]

OR

- Find the Taylor series expansion of $f(x,y) = e^x \cos y$ in powers of (x-1) and
- Find the maximum and minimum values of the function $f(x,y) = x^4 + y^4 x^2 y^2 + 1$.
- 10.a) Find all possible second order partial differential equations by eliminating the arbitrary constants a, b, c from $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
 - b) Solve $(p-q)z = z^2 + (x+y)^2$ [5+5]

- 11.a) Reduce the equation $p^2x^2 = z(z-qy)$ to F(p,q,z) = 0 form and hence solve it.
 - b) Solve $p^2y(1+x^2) = qx^2$.