R16

[2]

[3]

[2]

[3]

[2]

Code No: 131AB JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech I Year I Semester Examinations, December - 2016 **MATHEMATICS-II** (Common to CE, ME, MCT, MMT, MIE, CEE, MSNT) Max. Marks: 75 Time: 3 hours Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. (25 Marks) Find the Laplace transform of the function $f(t) = \begin{cases} t & 0 < t < a \\ -t + 2a & a < t < 2a \end{cases}$ Prove that $L^{-1}\{F(s)\} = f(t)$ and f(0) = 0 then $L^{-1}\{sF(s)\} = \frac{df}{dt}$. 1.a) b) c) Evaluate $\int_0^\infty a^{-bx^2} dx$. Show that $\beta(p,q) = \beta(p+1,q) + \beta(p,q+1)$. d) Find the area bounded by the curves y = x, $y = x^2$. e) Evaluate $\int_0^a \int_0^{\sqrt{a^2-y^2}} (x^2+y^2) dy dx$ by changing into polar coordinates. [3] Find the directional derivative of $xyz^2 + xz$ at (1,1,1) in a direction of the normal to the f)

Find a unit normal vector to the surface $x^2 + y^2 + 2z^2 = 26$ at the point (2,2,3). [3] h)

surface $3xy^2 + y = z$ at (0,1,1).

Find the work done by the force $\vec{F} = 3x^2i + (2xz - y)j + zk$ along the straight line i) joining the points (0,0,1) and (2,1,3).

Find the circulation of \vec{F} round the curve \vec{c} where $\vec{F} = (e^x \sin y)i + (e^x \cos y)j$ and \vec{c} is j) the rectangle whose vertices are (0,0), (1,0), $(1,\frac{\pi}{2})$, $(0,\frac{\pi}{2})$.

PART-B

(50 Marks)

Solve the differential equation $\frac{d^2x}{dt^2} - 4\frac{dx}{dt} - 12x = e^{3t}$ given that x(0) = 1 and x'(0) = -2 using Laplace transforms. [10]

3. Use Laplace transforms, solve $y(t) = 1 - e^{-t} + \int_0^t y(t-u) \sin u \, du$. [10]

Prove that $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$. Prove that $\Gamma(n)\Gamma(1-n) = \frac{\pi}{\sin n\pi}$. [5+5]

	b)	If m and	n are positive in	ntegers then prove	e that $B(m, n) = \frac{1}{2}$	$\frac{(m-1)!(n-1)!}{(m+n-1)!}.$	[5+5]	
	6. 7.a) b)	tetrahedr Change t	on <i>OABC</i> . Also he order of integrates	1 meets the ax find its mass if the Oxogration and solve z over the positive	he density at any \mathbf{R} $\int_0^c \int_{x^2/a}^{2a-x} xy^2 dy$	point is $kxyz$. dx .		Ċſ
	8.a)	Find the surface 3	directional deriv $xy^2 + y = z$ at	vative of xyz^2 +	xz at $(1,1,1)$ in	a direction of the	[5+5]	
	9.	Prove that	at if \vec{r} is the post of if $\vec{n} = -3$.	ition vector of an		e then $r^n \vec{r}$ is irro	otational and is	
	10.	Verify di	vergence theoreminder $y^2 + z^2 =$	m for $2x^2yi - y^2$ = 9 and $x = 2$.		n over the region	of first octant [10]	
**) **(1100	If $\vec{f} = 3x$ integratio	$x^2 \ddot{y} z^2 \ddot{t} + x^2 z^2 \dot{t}$ n. Hence evalua	$+2x^3yzk$. Show the the integral wh	w that $\int_C \vec{f} \cdot d\vec{r}$	is independent of joining (0, 0, 0)	of the path of to (1, 2, 3). [10]	
	9 47 7 9 h 9 9 8 8 9 9 8 8 9 8 9 8 8 9 8 9 8 8 9			144 C 244 C	AND AND			
				00Oe	00			
\$			BR	SR .	ZR.		9F	
* * * * * * * * * * * * * * * * * * *	2002 2000 2002 2000 2002 2000 2000 2000			200 2000 200 2000 200 2000 200 2000				
\$ •	3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	\$ *						

5.a) Using Beta and Gamma functions, evaluate the integral $\int_{-1}^{1} (1-x^2)^n dx$ where n is a positive integer.