R15

Code No: 123BP

\*\*\*\*

## JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 DATA STRUCTURES

(Common to CSE, IT)

|            | (Common to CSE, IT)                                                                                |                                                               |                                         |
|------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------|
| Time       | : 3 Hours                                                                                          | Max. Marks: 75                                                |                                         |
|            |                                                                                                    |                                                               |                                         |
| Note:      | This question paper contains two parts A and B.                                                    |                                                               | 1.11                                    |
|            | Part A is compulsory which carries 25 marks. Answer all questi                                     | ons in Part A                                                 |                                         |
|            | Part B consists of 5 Units. Answer any one full question fi                                        | rom each unit                                                 |                                         |
|            | Each question carries 10 marks and may have a, b, c as sub ques                                    | etions                                                        |                                         |
|            | - 4 question earlies to marks and may have a, o, e as sub ques                                     | stions.                                                       |                                         |
| ****       | PART- A                                                                                            | > × × × × × × × × × × × × × × × × × × ×                       |                                         |
| *,* ; *.   |                                                                                                    | (25 Marks)                                                    | 3,,747,                                 |
| 1.a)       | What is linked list? Write advantages of doubly linked list over                                   |                                                               |                                         |
| 1.0)       | That is mixed list. Write advantages of doubly linked list over                                    | 0 ,                                                           |                                         |
| b)         | What is recursion? Give the properties of a recursive definition                                   | of an algorithm                                               |                                         |
| . 0)       | what is recursion. Give the properties of a recursive definition                                   |                                                               |                                         |
| c)         | What is a stack? List the applications of stack.                                                   | [3]                                                           | ( ) ( ) ( )                             |
| d)         |                                                                                                    |                                                               | ·                                       |
| u)         | Show the detailed contents of stack to evaluate the given postfix $\{1\ 2\ 3 + *\ 3\ 2\ 1 - + *\}$ | expression. [3]                                               |                                         |
| e)         | Define a graph. List different graph traversal techniques.                                         | (0)                                                           |                                         |
| f)         |                                                                                                    | [2]                                                           |                                         |
|            | What are binary trees? Mention different types of binary trees w What is hashing?                  |                                                               |                                         |
| (g)<br>(h) |                                                                                                    | [2]<br>[3]                                                    |                                         |
|            | What is sorting? What is searching?                                                                |                                                               | 3,0,4 9 74.                             |
| i)<br>j)   | Define AVL tree? Give example.  What is P. tree of order m? Draw a P. tree of order ?              | [2]                                                           |                                         |
| J <i>)</i> | What is B-tree of order m? Draw a B-tree of order 3.                                               | [3]                                                           | *                                       |
|            | PART-B                                                                                             |                                                               |                                         |
|            |                                                                                                    | (50 Marks)                                                    | *** ***                                 |
| 2.a)       | What is amortized complexity? Explain different methods to arri                                    |                                                               |                                         |
|            | costs for operations.                                                                              | ve at amortized                                               |                                         |
| b)         | Write a C program to implement insertion to the immediate left of                                  | of the K <sup>th</sup> node in                                |                                         |
| - /        | singly linked list.                                                                                | [5+5]                                                         |                                         |
|            | OR                                                                                                 | [515]                                                         |                                         |
| :::3:::::  | Given an ordered linked list whose node is represented by ke                                       | v' as information                                             | 1771 1771                               |
| *,         | and 'next' as link field. Write a C program to implement de                                        | leting number of                                              |                                         |
|            | nodes (consecutive) whose 'key' values are greater than or eq                                      | ual to 'K' and                                                |                                         |
|            | less than 'K <sub>max</sub> '.                                                                     | [10]                                                          | # 155                                   |
|            | Toos than Temax .                                                                                  | [10]                                                          |                                         |
| 4.a)       | Write a C program to implement multiple stacks using single arra                                   | av -                                                          |                                         |
|            | Convert the infix expression a $/$ b $-$ c $+$ d $*$ e $-$ a $*$ c into postfi                     | iv evnression                                                 | 111111111111111111111111111111111111111 |
| ** : ~.!   | trace that postfix expression for given data $a = 6$ , $b = 3$ , $c = 1$ , $d = 1$                 | $= 2 \cdot e = 4 \cdot \begin{bmatrix} 5 \pm 5 \end{bmatrix}$ | \$ \$                                   |
|            | OR                                                                                                 | - 2, 0 - 7.[373]                                              |                                         |
| 5.         | What is a circular queue? Implement insert and delete operations                                   | . [10]                                                        |                                         |
| ٥.         |                                                                                                    | . [10]                                                        |                                         |
| 6          |                                                                                                    |                                                               | ec.                                     |

| *1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                                                                                                                                                    |                      |                               | Ş  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (4a)                                     | Construct a binary tree having the following Preorder traversal: A B C D E F G H I                                                                                 | traversal sequences: |                               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b)                                       | Inorder traversal: B C A E D G H F I Implement Depth First Search (DFS) algorith OR                                                                                | nm.                  | [5+5]                         |    |
| See Constitution of the Co | 7.a)<br>b)                               | Define a Max Heap. Construct a max heap for {12, 15, 9, 8, 10, 18, 7, 20, 25} What is a graph? Explain various representate                                        |                      | [5+5]                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.a)<br>b)<br>9.                         | Write an algorithm for Heap sort.  Apply selection sort on the following element {21, 11, 5, 78, 49, 54, 72, 88}  What is collision? Explain different coexamples. |                      | [5+5]<br>hniques with<br>[10] |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10.a)                                    | Build an AVL tree with the following values {15, 20, 24, 10, 13, 7, 30, 36, 25, 42, 29}. Write Knuth-Morris-Pratt pattern matching a OR                            | ***                  | ([5+5]                        | SK |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.                                      | Write short notes on: a) Red-Black trees b) splay trees c) b-tree                                                                                                  | es.                  | [3+3+4]                       |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | oo0oo                                                                                                                                                              | R. BR                | ĖR                            |    |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                                                                                                                                                                    |                      |                               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          | er er ei                                                                                                                                                           |                      |                               |    |
| 877,<br>197,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 201 300<br>201 300<br>300 300<br>300 300 | SR SR                                                                                                                                                              |                      | 8Ř                            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                    |                      |                               |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                          |                                                                                                                                                                    |                      |                               |    |

....

\*\*\*\*\*\*\*\*\*

....