Code No: 123BR

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, November/December - 2016 BASIC ELECTRICAL ENGINEERING

(Common to CSE, IT)

Time: 3 Hours

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit.

Each question carries 10 marks and may have a, b, c as sub questions.

PART- A (25 Marks) [2] State the Superposition theorem. 1.a) Distinguish between potential difference and electromotive force. [3] b) [2] Define Periodic function and Cycle. c) [3] What is the significance of form factor and peak factor? d) [2] What is the purpose of using core in a transformer? e) Define the regulation of transformer. [3] f) [2] List the basic requirements to produce e.m.f. g) What are the various losses in a D.C. Motor? [3] h) [2] What are the various classifications of instruments? i) What are the various types of Ammeters and voltmeters? .[3]...

PART-B

(50 Marks)

2.a) Explain the Kirchhoff's laws.

By using star-delta transformation for the following figure 1. Find the current 'I' supplied by the battery?

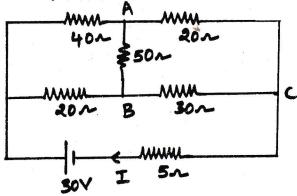


Figure: 1 OR

3. Using method of superposition, determine the current through the $5k\Omega$ resistors for the circuit in figure 2. [10]

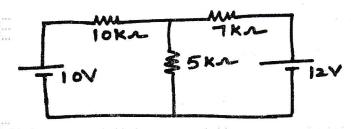


Figure: 2

- 4.a) Explain the concept of Average value and RMS value.
 - An alternating current varying sinusoidally, with a frequency of 50Hz, has an rms value of 20A. Write down the equation for the instantaneous value and find this value at (i) 0.0025s, (ii) 0.0125s after passing through a positive maximum value. At what time, measured from a positive maximum value, will instantaneous current be 14.14A?

 [5+5]

OR

- 5.a) In an a.c. circuit, $\nu = 200 \text{ Sin } (\omega \text{ t+30}^0) \text{ V}$, $i = 15 \text{ Sin } (\omega \text{ t-30}^0) \text{ A}$. Find reactive power.
- In a series RC circuit, the values of $R = 100 \Omega$ and $C = 25 \mu F$. A sinusoidal voltage of 50 MHz is applied and the maximum voltage across the capacitance is 2.5V. Find the maximum voltage across the series combination and also determine the apparent power. [5+5]
- 6.a) Explain the transformer on no-load with phasor diagram.
- A 50Hz single phase transformer has 6600V/400V. Having e.m.f per turn is 10V and the maximum flux density in the core is 1.6 Tesla. Find the:
 - i) Suitable number of primary and secondary turns
 - ii) Cross sectional area of the core.

[5+5]

OR

- A 25 kVA, 2200/220V, 50Hz single phase transformer obtained the following test results.
 - OC test (L.V.side) = 220V, 1.2A, 100 w
 - SC test (H.V.side) = 100V, 7 A, 310w
 - Calculate the parameters of the equivalent circuit of transformer referred to L.V. side and draw the equivalent circuit. [10]
- Explain the constructional details of a D.C. Generator with neat sketches. [10]
- 9.a) Derive the torque equation of induction motor.
 - b) A three-phase induction motor runs at 1440 rpm at full load when supplied power from 50 Hz, 3-phase line. Calculate i) slip at full load ii) frequency of rotor voltage iii) speed of rotor at a slip of 10%.
- 10. Describe the moving coil permanent magnet instrument with neat circuit diagram.

OR

Explain the essential requirements of indicating instruments with necessary diagrams.