Code No: 57022

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech IV Year I Semester Examinations, December - 2014 OPERATIONS RESEARCH

(Common to ME, MCT, AME)

Time: 3 Hours

Max. Marks: 75

Answer any Five Questions All Questions Carry Equal Marks

1.a) Using Graphical Method solve the following Linear Programming Problem Max $Z = 3x_1 + 4x_2$

Subject to $x_1 - x_2 \ge 0$; $2.5x_1 - x_2 \le -3$ and $x_1, x_2 \ge 0$.

- b) Write the Simplex method algorithm to solve Linear Programming Problem.
- 2.a) Write a least-cost method algorithm to solve transportation problem.
 - b) The assignment cost of assigning any one operator to any one machine is given in the following table:

		Opera				
			I	II	III	VI
	Machines	Α	10	5.	13	15
13.3	A. J.	$\mathbf{B}_{\mathcal{A}^{(n)}}$	3	9 🤇	18	3
		Ć.	10\	7	3	2
	Sector	\mathbf{D}	5	11	9	7 333

Find the optimal assignment.

3.a) Seven jobs go first over machine 1 and then machine 2. Processing times in hours are given as:

				1.700,000				
Job	:	A	В	C	D	E	F	G
Machine 1	:	6	24	30	12	20	22	18
Machine 2	:	16	20	20	12	24	2	6

Find the optimum sequence in which jobs should be processed.

- b) Write the types of replacement decisions.
- 4.a) Define the following terms:
 - i) Finite game
 - ii) Infinite game
 - iii) Zero sum game
 - iv) Saddle point.
 - b) Solve the following game whose pay-off matrix is given by:

	В	-			
		1	II.	III	VI
A	I	3	2	4	0
	II	3	4	2	4
6	III	4	2	4	0
	IV	0	4	0	8

- 5.a) Explain about the elements of the waiting line systems.
- b) A supermarket has a single cashier. During the peak hours, customers arrive at a rate of 20 customers per hour. The average number of customers that can be processed by the cashier is 24 per hour. Calculate:
 - i) The probability that the cashier is idle.

: 455°

- ii) The average number of customers in the queuing system.
- iii) The average time a customer in the queuing system.
- 6.a) Briefly explain about types of inventory models.
 - b) Compute Economic order quantity (EOO) and the total variable costs for the following items:

Annual demand = 5000 Units; Unit price = Rs.20; Order cost = Rs.13; Storage rate = 2% per annum; Interest rate = 12% per annum;

- Obsolescence rate = 6% per annum/
- 7.a) Use dynamic programming to solve the following linear programming problem. Max $Z = 3x_1 + 5x_2$ subject to the constrains $x_1 \le 4$, $x_2 \le 6$, $3x_1 + 2x_2 \le 18$ and $x_1, x_2 \ge 0$.
 - b) State the "Bellman's principle of optimality".
- 8.a) Write the practical applications of simulation.
 - b) A management wants of judge whether a project X is worth taking up or not. The data with regard to this project (having 10 years' life) is given below:

	year	1	2	3	4	5	6	7	8	9	10
	Net	7000	9800	10800	11100°	9400	7600	5700	4000	2000	2000
1	benefits			r intrans	jā gale i		Literatura.				N. N.
	(Rs)				2 à 3 		SIX	W** :		ë:	25.4%

If the initial outlay on the project is Rs.40,000/- with a salvage value of Rs.10,000/-, find out the Net present value of the project, given the opportunity cost of investment as 10%.