Code No: 113BS

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, December-2014 DIGITAL LOGIC DESIGN

(Computer Science and Engineering)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	Part- A	(25 Marks)
1.a)	What are the simplest technique for detecting errors?	[2M]
b)	What are the basic operations in Boolean algebra?	[3M]
c)	What is race around condition? How it is avoided?	[2M]
d)	What is maxterm?	[3M]
e).	What is a ripple carry-adder?	[2M]
f)	What is a priority encoder?	[3M]
g)	What is a full modulus counter?	[2M]
h)	What are the various methods used for triggering flip-flops?	[3M]
i)	What are types of ROM?	[2M]
j)	What is PLA?	[3M]
	Part- B	(50 Marks)

2.a) Covert 105.15₁₀ to binary, octal, hexadecimal.

b) What is hamming code? How is the hamming code word tested and corrected.

OR

- 3.a) Simplify the following Boolean expressions using the Boolean theorems.
 - i) (A+B+C) (B'+C) + (A+D) (A'+C)
 - ii) (A+B) (A+B') (A'+B)
 - b) Why a NAND and NOR gates are known as universal gates? Simulate all the gates.
- 4.a) Simplify $Y = \sum m(3, 6, 7, 8, 10, 12, 14, 17, 19, 20, 21, 24, 25, 27, 28)$ using K-map method.
 - b) Obtain
 - i) minimal SOP and
 - ii) minimal POS expressions for the following function $F(A, B, C, D) = \sum m(0, 1, 5, 8, 9, 10)$

OR

Obtain the minimal SOP expression for the switching function using k-map. $Y = \sum m(1, 5, 7, 13, 14, 15, 17, 18, 21, 22, 25, 29) + \sum d(6, 9, 19, 23, 30)$ Draw and explain the logic diagram.