Code No: 113BR

KIN

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, December-2014 BASIC ELECTRICAL ENGINEERING

(Common to CSE, IT)

Time: 3 Hours

917

Max. Marks: 75

(25 Marks)

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part- A

		(me manns)
1.a)	State and explain KCL and KVL.	[2M]
b)	State and explain Norton's theorem.	[3M]
c)	Define RMS and Average value of an alternating quantity.	[2M]
d)	A coil has a resistance of 4 Ω and an inductance of 9.55	mH. Calculate
1	(i) the reactance, (ii) the impedance, and (iii) the current taken	from a 240 V,
	50 Hz supply.	[3M]
e)	Why rating of the transformer is given in KVA? Explain.	[2M]
f)	Draw and explain the phasor diagram of single phase transforme	er on no load.
		[3M]
g)	Explain the principle of DC motor operation.	[2M]
h)	Write the similarities between transformer and induction motor.	[3M]
i)	What are the different types torques acting on the moving system	n of measuring
	instrument?	[2M]
j)	Explain how the deflecting torque provided in a moving system	of a measuring
	instrument?	[3M]

Part-B (50 Marks)

2.a) For the circuit shown in Figure 1, calculate the current I and voltage V_{ab} when i) $R_x = 0 \Omega$ ii) $R_x = 15 \text{ K}\Omega$ iii) $R_x = \infty \Omega$.

Figure 1

b) For the arrangement shown in Figure 2 find:

- i) the equivalent capacitance of the circuit and
- ii) the voltage across a 4.5 μF capacitor.

3.a) Find the value of R_L for maximum power transfer in the circuit shown in Figure 3. Find the maximum power.

- b) State and explain thevenin's theorem with an example.
- 4.a) Calculate:
 - i) The admittance Y
 - ii) The conductance G and
 - iii) Susceptance B of a circuit consisting of a resistor of 10Ω in series with an inductor of 0.3 H, when the frequency is 50 Hz.
 - b) A resistance of 10 Ohms, an inductive reactance of 5 Ohms, and a capacitive reactance of 10 Ohms are connected in parallel with each other across a supply of 230 ∠45° Volts. Calculate
 - i) Impedance and admittance of each branch
 - ii) Current in each branch
 - iii) Total current drawn from the supply
 - iv) Draw the phasor diagram.

OR

- 5.a) A 20 Ω resistance and 30 mH inductance are connected in series and the circuit is fed from a 220 V, 50 Hz AC supply. Find
 - i) Reactance across the inductance, impedance, admittance, current
 - ii) Voltage across the resistance
 - iii) Voltage across the inductance
 - iv) Real, reactive and active powers
 - v) Power factor
 - b) The waveform shown in Figure 4 is a half-wave rectified sine wave. Find the rms value and the amount of average power dissipated in a 10Ω resistor.

Figure 4

- 6.a) Explain the working principle of single phase transformer.
 - b) A 5 KVA single-phase transformer has a turns ratio of 10:1 and is fed from a 2.5 kV supply. Neglecting losses, determine:

i) the full-load secondary current

ii) the minimum load resistance which can be connected across the secondary winding to give full load KVA

iii) the primary current at full load KVA.

OR

- 7.a) Enumerate the various losses in a transformer. How can these losses be minimized?
- b) A 2400 V/400 V single-phase transformer takes a no load current of 0.5 A and the core loss is 400 W. Determine the values of the magnetizing and core loss components of the no load current. Draw to scale the no-load phasor diagram for the transformer.
- 8.a) Based on the type of excitation classify the DC generators.
- b) A 4-pole armature of a d.c. machine has 1000 conductors and a flux per pole of 20 mWb. Determine the e.m.f. generated when running at 600 rev/min when the armature is:
 - i) wave-wound
 - ii) lap-wound.

OR

- 9.a) Explain the working principle of three phase induction motor.
 - b) A 3-phase, 60 Hz induction motor has 2 poles. If the slip is 2% at a certain load, determine:
 - i) the synchronous speed
 - ii) the speed of the rotor and
 - iii) the frequency of the induced e.m.f.'s in the rotor.
- 10. With the help of a neat sketch explain the construction and operation of PMMC instrument.

OR

- 11.a) Discuss the classification of electrical instruments.
 - b) Explain the significance of controlling torque and damping torque relevant to the operation of indicating instrument.

