Code No: 115DU

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, March - 2017 CONTROL SYSTEMS ENGINEERING

(Common to ECE, ETM)

Time: 3 hours

1

Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

(25 Marks)

.a) Define transfer function. What are its limitations?	[2]
b) Give classification of control systems.	[3]
c) What is the difference between type and order of the system?	[2]
d) What are the standard test signals	[3]
e) What is the effect of adding poles to G(s) H(s) on the root loci?	[2]
f) Write limitations of Routh's stability.	[3]
g) Draw the pole zero location of lag compensator.	[2]
h) Define phase margin and gain margin.	[3]
i) — Define Observability.	[2]
Write Properties of State Transition Matrix	11 [3]

PART - B

(50 Marks)

[5+5]

2.a): Illustrate at least two applications of feedback control systems.

b) Determine the transfer function C(S)/R(S) for the following block diagram.

3.a) What is feedback? Explain the effects of feedback.

- b) What are differences between block diagram reduction and signal flow graph reduction? [5+5]
- 4.a) Derive the time response of second order under damped system due to unit step input.
 - b) Why derivative controller is not used in control systems? What is the effect of PI controller on the system performance?

OR

5. Find syste	the Error coeffici m having the forwa	ard transfer funct	ion.	ં કરતાં કે છે.	nity feed-back [10]	
		$G(s) = \frac{1}{s(s+1)}$	$\frac{14(s+3)}{5)(s^2+2s+2)}$	Ō		
6. Sketo	ch the root locus pl	ot of a unity feed $G(s) = \frac{K(s^2 - s^2)}{(s+2)(s-s^2)}$	back system wh -2s+2) +3)(s+4)	ose open loop T	F is [10]	
		0	R			
7. The	characteristic equat		ems are given be	elow		
Find	whether the system				[10]	
G(S)	open loop transfer $= \frac{k}{s(s+4)(s+80)}. \text{ It is}$ $= \text{constant } K_{V} = 30.5$	desired to have t	the phase margi	n to be at least 3	em is given by 3^0 and velocity [10]	
CITO	V)R			
9. Sket	tch the Bode plot			— Hence find	gain cross over	
			0.7.7			
freq	uency and phase cr	oss over nequent	cy.			ing ing
10. Given $X(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x1(t) \\ x2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$. Find the unit step response when, $X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ [10]						
)R			2.00
	cuss the significance	ompute e .	Analysis. 0 1 -2 -3		[5+5]	
**************************************	State State					
		00	O00			
		6K			3F)	