
	2106	1	
<8 ·	K8 K8 K8 K8 K8 K8		
	No: 5221AP JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD		
•	M. Tech II Semester Examinations, August - 2017		
Time:	COMPUTATIONAL FLUID DYNAMICS (Thermal Engineering)	K	
Note:	This question paper contains two parts A and B.		
	Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B		
	consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.	*	
<8 ·	PART-A (8 (8)		
	$5 \times 5 \text{ Marks} = 25$	N.	
1.a)	Distinguish between finite difference, finite volume and finite element discretizations. [5]	4	
b)	Write the CFD methodology to solve hyperbolic equations with an example. [5]	. I	
<	Write a short note on the need of pressure correction method for incompressible viscous flows.	X	
d)	What are the conditions on the selection of finite volumes for conservative discretization? [5]	1	
e)	Explain the meaning of the term 'residual' in variational methods. [5]		
	PART - B		
<8,	Derive finite difference equations for the following partial differential equations and		
۷	indicate their order of accuracy: [10]		
	a) $(\partial \mathbf{u}/\partial \mathbf{t}) + \mathbf{a} (\partial \mathbf{u}/\partial \mathbf{x}) = 0$.	a .	
K a	b) $(\partial u/\partial t) = a (\partial^2 u / \partial x^2)$. c) $(\partial^2 u / \partial x^2) + (\partial^2 u / \partial y^2) = 0$.		
$\langle \S_3, \cdot \rangle$	Given the function $f(x) = x^3-5x$, calculate $\partial f/\partial x$, $\partial^2 f/\partial x^2$, at $x=0.5$ and 1.5 by using second order central, forward and backward differencing. Using step sizes 0.00001, 0.0001, 0.01, 0.2, 0.3 determine numerical error for each computation. [10]	K	
	1.0001, 0.01, 0.2, 0.5 determine numerical error for each compatition.		
4.	Derive the stability condition for CTCS discretization of second order wave equation using von Neumann stability analysis. [10]		
<85.a),	Write the Burger's equation. What types of problems are governed by Burger's equation?	X	
b)	Discretize Burger's equation using any finite difference scheme of your choice. Give		

the name of the scheme you have selected and comment on its order of accuracy. [5+5]

