| K8 | K8 K | Α, | |-----|--|----------| | K8, | Code No: 5221AN JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech II Semester Examinations, August - 2017 COMBUSTION AND ENVIRONMENT (Thermal Engineering) Max.Marks:75 | | | 8 | Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART - A 5 × 5 Marks = 25 | X | | K8 | (a) What do you know about the origin of coal? What changes occur in the series from wood to anthracite? [5] (b) What you understand by the 'activation energy' of a reaction? Explain. [5] (c) Distinguish between the enthalpy of combustion and the internal energy of reaction. How are they related? [5] (d) Briefly describe the mode of combustion of fuel droplets in sprays. [5] (e) What do you understand by air pollution from the combustion of fossil fuels? [5] | / | | K8 | PART - B 5 × 10 Marks = 50 2.a) Explain the fractional distillation method of refining petroleum products with suitable | | | K8 | b) Discuss the problems associated with very low calorific value gaseous fuels. [5+5] OR 3.a) Compare and contrast the solid fuels, liquid fuels and gaseous fuels in terms of chemical properties. b) Discuss the various alternative energy resources which are likely to make a significant contribution towards the energy demand in future | | | K8 | 4.a) A fuel gas has the following percentage volumetric analysis: H₂: 48, CH₄: 26, CO₂: 11, CO: 5, N₂: 10. The percentage volumetric analysis of the dry exhaust gases is CO₂: 8.8, O₂: 5.5, N₂:85.7 Determine the air/fuel ratio by volume if air contains 21% O₂ by volume. b) Discuss the law of Arrhenius for the effect of temperature on the reaction rate constant. Show how the value of E can be determined experimentally. | | | | 5.a) Calculate the composition of dry flue gases in the combustion of C₇H₁₆ for stoichiometric combustion, 30% excess air and 20% deficit air. b) A first order reaction is 30 percent complete at the end of 140 s. What is the value of the reaction rate constant in s⁻¹? In how many seconds will the reaction be 60 percent complete? [5+5] | | | Ŋδ. | , ho ko ko ko ko ko ko k | <u> </u> | .