R15 Code No: 5215AP JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD M. Tech II Semester Examinations, February - 2017 ADVANCED FINITE ELEMENT ANALYSIS (Machine Design) Max.Marks:75 Time: 3hrs Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART - A 5×5 Marks = 25 [5] What are the characteristic of shape function? 1.a) [5] What are the types of load acting on the structure? b) :What is CST element? d) Write steady state equation for one dimensional heat transfer in thin films. [5] What is Jacobian Matrix? e) PART - B $5 \times 10 \text{ Marks} = 50$ Derive an expression for total potential energy of an elastic body subjected to body [10] force, traction force and point force. OR Derive stiffness matrix for a beam element starting from shape function. [10]3. 4. Determine the deflections for the truss structure shown in Figure. [10] A, E, lState and explain the three basic laws on which iso parametric concept is developed. [10][10]Derive the shape functions for a CST element. 6. 7. Derive the shape functions for a 2 - D quadrilateral element.

* X * Y * Y * Y * Y * Y * Y * Y * Y * Y	8. Derive to	he eleinent stiff ensional elemen	its.		pproach, for heat	conduction in [10]	******
OR 9. Explain the types of boundary conditions in heat transfer problems with example. [10]							
X X X 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	10 Explain what would happen if the lowest eigenvalue of a system is zero and the inverse iteration technique is applied. How will you overcome the difficulty? OR						W M M M M M M M M M M M M M M M M M M M
	11. Find the	natural frequen	cies of vibration	s of a simple ca	ntilever beam.	[10]	
	RØ		00	000-12-5	RO	RO	EE
	RØ	RO	RØ	RO	RØ	RØ	RE
IJ	RO	RO	RO	RØ	RO	RØ	
	RO	RØ	RO	RO	RO	RO	RE
	RO	RØ	RO	RØ	RO	RO	EE
	FO	RØ	RØ	RO	RØ	RØ	RE
	;····. ,····.	9**** ******	erme erme		RO	RO	R
X N P X P Y X P Y N X Y X X X X P	* * * * * * * * * * * * * * * * * * *	****	****	RE	**** * * * * * * * * * * * * * * * * *	X X X X X X X X X X X X X X X X X X X	* X X X *