Code No: 113AW

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, May/June - 2015 SIGNALS AND SYSTEMS

(Common to ECE, EIE, BME)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART- A	(25 Marks)
1.a)	Write about unit step function and unit impulse function.	[2M]
b)	What are Dirichlet conditions?	[3M]
c)	State Duality Property of Fourier Transform.	[2M]
d)	State Sampling Theorem.	[3M]
e)	What is Paley-Wiener Criterion?	[2M]
f)	Define Signal Bandwidth and System Bandwidth.	[3M]
. g)	Write any two properties of Correlation function.	[2M]
h)	Write relation between convolution and correlation.	[3M]
i)	Find the Laplace Transform of unit ramp function.	[2M]
j)	What is the relationship between z-transform and DTFT?	[3M]
	PART-B	(50 Marks)
. 2 ~)	Voice at City	
2.a)	Verify the following signals $\sin n\omega_0 t$ and $\sin n\omega_0 t$ are orthogonal not over the	
b)	interval $(t_0, t_0 + 2\pi/\omega_0)$.	
b)	Define the following elementary signals:	
	i) Real exponential signal	
	ii) Continuous time version of a sinusoidal signal and bring ou	
	between sinusoidal and complex exponential signals.	[5+5]
2 -1	OR	
3.a)	Expand following function f(t) by trigonometric Fourier series over the Interval	
L)	(0,1). In this interval $f(t)$ is expressed as $f(t) = At$.	
b)	Prove that discrete magnitude spectrum is symmetrical about vertice	
	as phase spectrum anti-symmetrical about vertical axis.	[5+5]
4.a)	Find the Fourier transform of symmetrical gate pulse and elected the	
b)	Find the Fourier transform of symmetrical gate pulse and sketch the spectrum. State and prove following properties of Fourier transform:	
υ)	i) Time shifting.	
	ii) Differentiation in time domain.	
	OR	[5+5]
5.a)	▼ ==	
J.uj	State and prove sampling theorem for band limited signals us approach.	ing analytical
b)	Give introduction to band pass sampling.	· [6:63
~,	one madadon to band pass sampling.	[5+5]

6.a) Derive the relationship between rise time and bandwidth. [5+5]Sketch the frequency response of ideal LPF, HPF and BPF. b) What is a distortionless system? Explain. 7.a) **b**) Check whether the following systems are linear or not. i) $\frac{dy(t)}{dt} + 2y(t) = x^2(t)$ [5+5] ii) y(n) = A x(n) + B; where A and B are constants. Prove that the correlation and convolution functions are identical for even Signals. 8.a) **b**) Explain about graphical procedure to perform convolution. [5+5]Explain detection of periodic signals in the presence of noise by Correlation. 9.a) Compare autocorrelation and cross correlation in detail with example. [5+5] b) 10.a) Find Laplace transforms and sketches their ROC of: i) x(t) = u(t-5)ii) $x(t) = e^{j\omega t}u(t)$. Find the inverse Laplace transform of X(s) = (-5s-7)/(s+1)(s-1)(s+2). [5+5] Determine z - transform, pole - zero locations and sketch the ROC of following signal $x(n) = -u(-n-1) + (1/2)^n u(n)$. Find the inverse z transform of $X(z) = (2+z^{-1})/(1-0.5z^{-1})$ with ROC $|z| > \frac{1}{2}$ using power series expansion.

--eoOoo--