Code No: 09A30402

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B.Tech II Year I Semester Examinations, May/June-2013

Signals and Systems

(Common to ECE, EIE, BME, ETM, ICE)

Time: 3 hours

8FC

SH

Max. Marks: 75

Answer any five questions All questions carry equal marks

- 1.a) Define Orthogonal Signal Space and closed or Complete set of orthogonal functions and hence represent a function by a closed or complete set of mutually orthogonal functions.
 - b) Derive the expression for approximating a given function f(t) by a set of n orthogonal functions $g_1(t)$, $g_2(t)$,....., $g_n(t)$ and also show that the mean square error can be reduced when a function is approximated by a more number of orthogonal functions. [7+8]
- 2.a) For the Periodic function given below derive the exponential form of Fourier Series and plot magnitude and phase spectrum.

- b) Compute Fourier transform of Standard signals like Unit Step, Unit Impulse, Single Sided exponential, Double Sided Exponential and Gate function. [7+8]
- 3.a) What is an LTI system? Show that an LTI system combined with time scaling property may result in an Time-variant system.
 - b) An LTI system with an impulse response $h(n) = 2(\frac{1}{2})^n$ u(n) is excited by the input sequence x(n). Determine the output response of the system for the following input signals

i)
$$x(n) = 5(3/4)^n u(n)$$

ii)
$$x(n) = nu(n)$$
.

[7+8]

- 4.a) State and prove Parseval's Theorem
- b) Find the convolution of two signals $x(n) = \{1, 1, 0, 1, 1\}$ and $h(n) = \{1, -2, -3, 4\}$ and represent them graphically. [7+8]
- 5.a) Define Nyquist rate. Compare the merits and demerits of performing sampling using impulse, Natural and Flat-top sampling techniques.
 - b) Discuss the process of reconstructing the signal from its samples. [8+7]
- 6.a) Determine the Laplace transform of

i)
$$f(t) = e^{-at} \sin \omega t$$

ii)
$$f(t) = e^{-at} \cosh \omega t$$
.

SPA

88

BFK

SR

BR

BR

8A

部

ars

BR

BR

BR

35-1

- 7.a) Determine the impulse and unit step response of the systems described by the difference equation y(n) = 0.6y(n-1)-0.08y(n-2)+x(n).
 - b) Define Region of Convergence and state its properties w.r.to Z-Transform.

[8+7]

[8+7]

- 8.a) Show that autocorrelation and power spectral density form a Fourier Transform Pair.
- b) Discuss the process of extraction of a signal from noise in frequency domain.

お尽