R09

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY, HYDERABAD B. Tech I Year Examinations, May/June-2013

ENGINEERING MECHANICS

(Common to CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM, PT, CEE, MSNT, ACE)

Time: 3 hours

BR

BR

SPR

BR

BR

BR

SR

SR

BR

部

aR

8R

8R

SR

SR

SR

BA

88

APR.

Max. Marks: 75

SR

SR

SR

an-

热眼

Answer any five questions All questions carry equal marks

1.a) Explain various systems of forces with neat sketches.

b) A 300 N vertical force is applied at the end of a lever which is attached to shaft at O as shown in Figure 1 Determine

i) The moment of the 300 N forces about O.

- ii) The magnitude of the horizontal force applied at A which creates the same moment about O.
- 2. Two identical rollers, each of weight 100 N, are supported by an inclined plane and a vertical wall as shown in Figure 2. Assuming smooth surfaces, find the reactions induced at the points of support A, B and C.

Figure 2

3.a) Find the centroid of the inverted T section shown in Figure 3

BA

3K

BA

BEK

BR

88

6R

SP

8R

部局

OPL

SEC

SR

BR

SR

BR

為高

88

SA

35

8R

SK

SR

Figure 3

b) Determine the centre of gravity of the composite body consisting of a cylinder of radius 'r' attached to a hemisphere of radius 'r' as shown in Figure 4

- 4.a) Define mass moment of inertia and explain Transfer formula for mass moment of inertia.
- b) Derive the expression for the moment of inertia of a homogeneous sphere of radius 'r' and mass density 'w' with reference to its diameter.
- 5. Determine the forces induced in the members of the pin-jointed truss shown in Figure 5. Show the values on a neat diagram of the truss. Mention clearly the nature of the forces (tension or compression) in each member.

Figure 5