	B.Tech II Year I Semester Examinations, April/May - 2018
$\mathbb{R}^{\mathbb{R}}$ Tii	NETWORK ANALYSIS (Electronics and Communication Engineering) me: 3 Hours Max. Marks: 75
No	te: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.
3 K	PART- A (25 Marks)
1.a	$L_1=2 \text{ H}, L_2=8 \text{ H} \text{ and M}=3\text{H}$?
b	Define quality factor and hand width of a series resonant circuit.
	\sim 1 10 10 70 \sim 1 10 10 10 10 10 10 10 10 10 10 10 10 1
ok (
	$R \geqslant C \stackrel{\underline{\qquad}}{=} r$
	Figure 1
e	
f	List any three properties of Laplace transform. [3]
ξ	Write down the set of equations of a two port network in terms of ABCD parameters. [2]
ŀ	Define image and iterative impedance. [3] List the proportion of Low Pass filter.
i j) List the properties of Low 1 assistant.
3R	PART-B (50 Marks)
2.8	$Z_1 = 60 + j100 \Omega$, $Z_2 = 30 + j40 \Omega$. and $Z_L = 80 + j60 \Omega$.
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Figure 2

R16

- 8R 8R 8R

Code No: 133BJ

18R	8R 8R 8R 8R 8R	
b)	For the network shown in figure 3 draw the oriented graph and frame the cut-set matrix [5+5]	
8R	$\begin{array}{c c} & & & \\ & & & \\$	140
	Figure 3 OR	9
3.a) b)	Define Graph, Tree, Basic tie set matrix and cut set matrix for a planar network with a example. Draw the oriented graph of a network with fundamental cut-set matrix as shown in figure 4. Also find number of cut-sets and draw them. Twigs Links	ге
8.	S	
4.a)	Refer to the circuit shown figure 5 the switch is closed at $t = 0$. (i) determine equation for i_L and v_L .(ii) At $t = 300$ ms, open the switch and determine equations for i_L and v_L during the decay phase. (iii) Determine voltage and current at $t = 100$ ms and a $t = 350$ ms. (iv) Sketch i_L and v_L .	
	$\begin{array}{c c} R, \\ SO \Omega \\ R \geq SO \Omega \\ \end{array}$	
(S) (b)	Figure 5 A series resonant circuit has a bandwidth of 100 Hz and contains a 20 mH inductance and a 2 μF capacitance. Determine (i) f ₀ (ii) Q (iii) Z _{in} at resonance (iv) f ₂ . [5+5] OR	
8R - 8	3Riahian	

8R	8R 8R
5.a) b)	Design a series <i>RLC</i> circuit that will have an impedance of 10Ω at the resonant frequency of $\omega_0 = 100$ rad/s and a quality factor of 80. Find the bandwidth. Consider the circuit shown in figure 6. Find i(t) for $t < 0$ and $t > 0$. [5+5]
8R	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$
	Figure 6
6.a)	Obtain the response of R-L-C series circuit for exponential excitation. Use Laplace Transform method. Determine the RMS value of the current waveform shown in figure 7. If this current waveform is passed through 2 Ω resistor find the average power absorbed by the resistor?
8R	
	Figure 7 OR
7.a)	A Voltage $V_mSin(\omega t + \phi)$ is applied to an initially relaxed RL series circuit. Find the value of ϕ for which there will be no transient current in the circuit. Use Laplace Transform
3 - b)	method. Find the rms value of the voltage waveform shown in figure 8. $r(t) \uparrow$
	10
8R	8R 8R 8R
88	8R 8R 8R

8R 8R 8R 8R 6.

