$Q \prod_{i}$		
Cod	e No: 125AK	R15
Cou	JAWAHARLAL NEHRU TECHNOLOGICAL UN	
	B. Tech III Year I Semester Examination	
\cap \cap	D. Tech III Teal T Semester Examination ANALOG COMMUNICATION	
> - '	(Electronics and Communication Eng	
Time	e: 3 hours	Max. Marks: 75
		Max. Marks: 75
Note	: This question paper contains two parts A and B.	
	Part A is compulsory which carries 25 marks. Answe	er all questions in Part A Part B
	consists of 5 Units. Answer any one full question from	each unit. Each question carries
77 F7	10 marks and may have a, b, c as sub questions.	
>< _/	IXU XU XUX	
	PART-A	
		(25 Marks)
		()
1.a)	What is ring modulator?	[2]
b)	Describe COSTAS loop.	[3]
c)	Give comparison of AM techniques.	[2]
> d)</td <td>Describe applications of different AM systems.</td> <td>[3]</td>	Describe applications of different AM systems.	[3]
\/	Describe zero crossing detectors.	
f)	Compare FM and AM.	[3]
g)	What is pre – emphasis?	[2]
, h)	What is de – emphasis? Draw the diagram.	[3]
1)	What is time division multiplexing?	[2]
j)	Explain generation of PPM.	[3]
	ST ST PARTEB S	
	C Carre	(50 M - 1)
		(50 Marks)
2.a)	Explain switching modulator.	
b)	A distorted form of a sinusoidal wave cos ³ ω _c t is availal	ole. To obtain DSB = SC signal
	a modulating signal f(t) is multiplied by this distorted	
	sketch of the product $f(t) \cos^3 \omega_c t$. How can the desired	modulated signal f(t) cos w.t be
> </td <td>obtained from this product?</td> <td>[4+6]</td>	obtained from this product?	[4+6]
	\cup	
3.a)	Explain the envelope detector.	
b)	Consider an AM signal $\phi_{am}(t) = (1 + A\cos \omega_m t) \cos$	ω _c t, where the message signal
	frequency $\omega_m = 5$ KHz and the carrier frequency, $\omega_c =$	100 KHz. The constant $A = 15$.
	Can this signal be demodulated by an envelope detector	or? What will be the output of
	the envelope detector? Find the frequency spectrum o	f the envelope detector output.
>< /	XR XP XP XI	[4+6]
	MIN	
4.	Single – sideband modulation (SSBM) may be viewed as	s a hybrid form of AM and FM.
	Evaluate the envelope and instantaneous frequency of a	an SSB wave for the following
	two cases:	
	a) When only the upper sideband is transmitted.	
~ ~ ~	b) When only the lower sideband is transmitted.	[5+5]
~ L)_	Q Q Q Q Q Q Q Q Q Q	
$\supset - \setminus 2$.	Explain vestigial side band modulation.	[10]

88	8R 8R 8R 8R 8R 6.
6.a) b)	
7.a) b)	Explain phase locked loop. An angle modulated wave is described by an equation
8R	$\Phi(t) = 10 \cos (2 \times 10^6 \text{ nt} + 10 \cos 2000 \text{nt})$ Find: i) The power of the modulated signal, ii) The maximum frequency deviation iii) The maximum phase deviation, iv) The bandwidth of the signal. [4+6]
8.a) b)	Explain average noise figure of cascaded networks. Let a message signal m(t) be transmitted using SSB modulation. The power spectral density (PSD) of m(t) is $S_M\left(f\right) = \begin{cases} a f /W, & f \leq W\\ 0, & otherwise \end{cases}$
(S) (9,a) b) (b)	Where 'a' and 'W' are constants. White Gaussian noise of zero mean and PSD N _o /2 is added to the SSB modulated wave at the receiver input. Find an expression for the output SNR of the receiver. OR Describe noise in DSB and SSB systems. An unmodulated carrier of amplitude A, and frequency f _c and band – limited white noise are summed and then passed through an ideal envelope detector. Assume the noise spectral density to be of height N _o /2 and bandwidth 2W. centered about the carrier frequency, f _c . Determine the output SNR for the case when the carrier – to – noise ratio is high. [4+6] Describe PAM (single polarity, double polarity). The signals given below are not band limited. However, they can be approximated as band limited signals. Assume a suitable criterion for such an approximation in each case and find the corresponding minimum sampling rate. i) e ^{-2 t} , ii) e ^{-2t} cos 100t u(t), iii) t e ^{-t} u(t), iv) G ₂₀ (t).
\[\begin{aligned} alig	Explain generation and demodulation of PWM. Generalize the uniform sampling theorem for signals whose spectra are band limited to f_m Hz but not centered at ω =0. The positive spectrum of such signals lies between f_l and f_h where $f_h - f_l = f_m$. Show that the minimum uniform sampling rate for such signals must be 2 f_h /n samples per second where f_h is the highest frequency of the spectrum and n is the largest integer less than f_h/f_m . [4+6]
8R 4.2	8R 8R 80 8R 8R