CMR ENGINEERING COLLEGE: : HYDERABAD **UGC AUTONOMOUS**

I-B.TECH-II-Semester End Examinations (Supply) - January- 2025 VECTOR CALCULUS AND TRANSFORMS

(Common for all)

[Time: 3 Hours]

[Max. Marks: 60]

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 10 marks. Answer all questions in Part A.

Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	•	•	
	· <u>P</u>	ART-A	(10 Marks)
1. a) b) c)	Define the conditions under which the Laplace transform of $f(t)$ exists. Define the Laplace transformation of periodic functions. Find $L^{-1}\left\{\frac{1}{e^{n+2}}\right\}$		[1M] [1M] [1M]
d) e) f) g) h) i)	Define Convolution product. Define the Gamma function. Write the relation between Beta and Define the Gradient of a scalar point Define Solenoidal Vector. State Gauss-divergence Theorem. State Green's Theorem.		[1M] [1M] [1M] [1M] [1M] [1M]
2.a)	Find $L\{\left(\sqrt{t}-\frac{1}{\sqrt{t}}\right)^3\}$	PART-B	(50 Marks) [5 M]
b)	Find $L\{e^{3t}\sin^2t\}$	OR	[5 M]
3.	Using Laplace transform, Evaluate $\int_0^\infty \frac{\cos at - \cos bt}{t} dt.$		[10M]*
4.	Using Convolution Theorem, find	•	[10M]
5.	$L^{-1}\left[\frac{s^2}{(s^2+a^2)(s^2+t^2)}\right]$ Solve the differential equation Using the Leplace given that $y(0)$, $y(0)$	Lec	[1 0M]
	Using the Laplace given that $x(0)$, $x(\pi/2)=1$.		

- Evaluate $\int_0^1 \frac{x^2}{\sqrt{1-x^5}} dx \text{ in terms of Beta function.}$ [5M]
- b) Evaluate $\int_0^\infty 3^{-4x^2} dx$ [5M]
- 7. Change the order of integration $\int_0^1 \int_{x^2}^{2-x} xy \, dx \, dy$ and hence evaluate of double [10M] integral.
- 8.a) Prove that $\nabla(r^n)=n.r^{n-2}\bar{r}$ [5M]
- b) Find the directional derivative of f=xy²+yz³ at the point (2,-1, 1) in the direction of the i+2j+2k. [5M]
- 9. Show that the vector $(x^2-yz)i+(y^2-zx)j+(z^2-xy)k$ is Irrotational and Find its Scalar potential. [10M]
- 10. Verify Green Theorem in the plane for $\oint (x^2 xy^3) dx + (y^2 2xy) dy$, Where [10M] C is Square with vertices (0,0), (2,0), (0,2) & (2,2).
- C is Square with vertices (0,0), (2,0), (0,2) (2,2).

 OR

 11. Verify Stoke's Theorem for $F=-y^3i+x^3j$, where S is the circular disc $x^2+y^2 \le 1$, z=0. [10M]